

A RF.FERENCE MANUAL FOR

BASICXE

This manual Is Copyright (Cl) by
Optimized Systems Software, Inc.

Portions of this manual are
Copyright ("l 1980 by At"ri, Inc.
and arc reprinted with the
permission of At art, Inc.

All rights reserved, ReproducUon or transl atton of
any part of this manual beyond thot expressly
permit t ed b)' fll07 or !lIOB of the United States
Copyright Act is unlawful without the permission of
the copyright owner.

...

OSIT.
Optimized Systems Software, Inc.
12218 Kentwood Avenue San Jose, California 95129 (408) 446·3099

Page 11 BASIC XI Reference Manual

Ackno",ledgements
Trademarks

Aclmowledgp.ments.

OSS grntefully thanks Alnrl, Inc., ror Its kind
perrnfsaiori to rr-pr tnt portions of the Alnri RASle

MRnual. be aware that these
portions hnv.. be-en copyrighted by Alnrl. Inc., and
rpsp<>cl Ihe rll,hts Implied ther-eby,

WP. olso thank thoae stal war t whose requests
and pleas ror An extr-ndcd B" SIC Insptr-ed us 10 create
RASIC Xr., and those bela-Iesters who help<>d us mnke
sure the t XF. works the wn y we wanl It 10.

Trademarks

DOS XI., BASIC XI., BASIC XE, OSS, and Supercartrldge
arc IrRdemsrks or Optimized Syslems Sort ware, Inc.

Atarl Is a "eglstered Irademark or Atart, Inc.

800 XL, f,S XE. 130 XE, 810 Disk Drfve , 1050 Disk Drive,
.clO Program Record"r, 1010 Pro/{ram Recorder,

and 850 Interface Module are trademarks or Al.arl, Inc.

BASIC XE Reference Manual Page Iii

Page Iv BASIC XE Reference Manual

Preface
Caveat

You may wonder why BASIC XE needs a reference manual at all. It's just another
BASIC, right? Well ...yes and no. BASIC XE Is another BASIC, but It's a cut above
the other BASICs currently available for Atarl XL and XE series computera. It
needs Its own reference manual so that you can find out just how to take
advsntage of all the extras Included In BASIC XE.

What's In ThIa Manual?

ThIs manual does not pretend to teach you how to program In BASIC. There are
several very good tutorials that cover the rudiments of BASIC programming on the
Atarl, and we direct you to them If BASIC Is completely forE'.Ign to you.

Thst doesn't mean that this manual Is useless. If you want to exploit BASIC XE's
advantages, It's a necessity. Between these covers you wl\l find a complete
description of the BASIC XE language, Including the special statements unique to
BASIC XE as well as those In standard BASIC. We have avoided computer jargon
whenever possible, resorting to It only when abaolutely necessary. To decrease
bewUderment we define jargon terms when they are flrat used, and provide a
glossary of 1111 the Jargon used In the manual,

As you will notice when you look at the table of contents, thla manual groups
commands that perform related tuke Into chapters, rather than simply lIaUng them
In alphabetical order. This enables you to find all the commanda that could help
you with a specific task. We have included an alphabetized Index at the end of the
book so that you can find single topics snd commands quickly.

Where To Go From Here

If you are plannlng to read this manual cover to cover before you even boot
BASIC XE, that's fantastic! If not, may we suggest that you at least read the
Introduction and scan the table of contents. This will give you a brIef overview of
BASIC XE and an Idea of where to fInd things In the reference manual.

Caveat

Because we're only human and so sometimes make mistakes, a caveat Is required.
We have made every effort to ensure that this manual accurately describes the
BASIC XE system and language. However, due to the ongoing Improvement and
updating of all OSS products (Including BASIC XEl, we cnnnot gUllrantee the
absolute accuracy of the documentation. Therefore, OSS, Inc., disclaims all
HabUity for changes, errors, or omissions In either the manual or the software
Itself.

BASIC XB Reference Manual Pagev

Page vi BASIC XI! Reference Manual

Table of Contents

Introduction
Extras that RASIC XE Oeters You l
How to !loot BASIC XE 2
How to Use thh nunl 3
Special Notations thl s Manual Uses 3
BASIC XE's Operating Modes 4
BASIC XE K"ywords and S;ymbols 4
A Glossary of Tenns this Manual Uses 5

Variables (vsr)
Variable Types, Names, and Maxlmun 3
Arlthnetlc Variables (avar) 9
Arithmetic Arrays and Matrices (mvar) 10
String Variables Lsvar) 12
String Arrays (savar) 12
Specifying mvar, svar, and savar Slzes DIM 13
Creating Private Varlabl"s LOCAL 14
Notes and Warnlng·s Regarding LOCAL 15
Assigning Values to Varlables 16
Using Keywords as Variable Names LET 17

Operators (ops)
Arithmetic Operators (aop) 19
Logical Operators (lop) 20
Operator Precedence •• 21

EXpressions (exp)
String and Nunerlc Constants 23
The In ternal Fonnat of Ntmbers 23
Arithmetic F.xpresslons (aexp) 24
String Expressions (sexp) 24

Edl tlng Your Progr....
Wiping the Slate Clean NEW 25
Line Ntmber Ing the Easy Way NUM 25
Looking at Your Progrlm LlST 26
Deleting Program Lines DEL 26
Renunberlng Your Progr..n RENtIl 27
Putt Ing Remarks In Your Program REM 27

Storing and Retrieving Your Progr....
Storing Your Program as Text. LIST 29
Retrieving Your Text Program ENrER 29
Star Ing Your Pr og r en as Tnkens SAVE 30
Retrieving Your Tokenlzed Program ••••••••••••WAD•••••••••••••••••• 30
Storing Your Program on Cassette CSAVE 30
Retrieving Your Program from Cassette •••••••• ••••••••••••••••• 30

BASIC XI! Reference Manual Page vII

Table ot Contents

_kIng Your Progr.... Stop and Go
Your ProgrRll Go RUN 31

Finishing Vour Progr"" ENO n
Making Your Pr og r an Really C>o • FAST 32
Stopping Vour Progrlm STOP• n
Restarting Your Progran OONI' 33
Finding Out What vour Program Is Dolng •••••••TRACE/TRACEOFF•••••••• 33

Contlgurlng the BASIC XE System
Pe r sona l l z i ng RASIC XE SET 35
Finding Out What's been rersonallzed t SYS 36
Changing Vour C",",puter's Memory •••••••••••••• tnlIDI••••••••••••••••• 37
Resetting Varlabl .. s etR 37
Finding Out llow I\\Jch Roan Vou ""ve t FRE 37
Looking at Varlables LVAR 37
Accessing the Extra In a 130XE•••••••• EXTEND•••••••••••••••• 38

ExitIng BASIC XE
n, i ng to the I1OS ros (CP) 39
C",lng on Long Trips BYE 39

Beginning Data Input/Output
Introducing Atarl 1/0••• 1
Preparing To Do Sane I/O OPEN 2
Cleaning Up ACter Doing I/O••••••••••••••••••CLOSE 43
Displaying InConnatlon PRINT 43
r..·tt Ing InConnntion INPUT 44
Slor'ing n Single Ryt rUT 45
Re t rLev i ng a Single Byte GET 45
Going Dlr ..ctly to the Printer •••••••••••••••• LPRINT•••••••••••••••• 45
Skipping to t he Plght Place TAB 46
Another Way oC Skipping t TAB 6

Advanced Dat8 Input/Output
Formatting InConnation as Vou Olsplay It ••••• PRINT USING••••••••••••7
Changing Vour Charact .. r OI.play ••••••••••••••NORMAL/INVERSE•••••••• 50
Storing Blocks oC Da t a on a Oisk Orlve BPUT 51
Retri ..vlng Rlocks oC Tlnta Cran a Disk Drive .. IlGET 51
Storing Records on a Disk Drlve •••••••••••••• RPUT•••••••••••••••••• 52
Retrieving Pecords Cran a Ilisk Drlv RGET 53
St"ring Rinary Files on a Disk Orlve BSAVE 5.
Retrieving IHnary Fi l e s Cran a Disk Drive BWAD 5.
Finding Out \\llere You Arc on the Disk NOTE 55
Telling the Disk Where You Want To Re POINT 55
Finding Out How a Device Fe.. ls STATUS 55
Iloing X-tra Special I/O •••••••••••••••••• , •••XIO 56

Page viii BASIC Xl! Reterence Manual

Table 01 Contenta

ManagIng DIsk Pflc.
Finding Out l\'hat's on a IlIsk DIR 57
Pr o t ec t Lng a Disk FIJe PROTECT 57
Unpr o tec t f ng a Disk Fllc UNPROTECT 57
Changing the Nnme of a Disk Flle RfNAME 58
Deleting a IlIsk File ERASE 58

and Statements
-----rooplng by obers FOR/NElM'/ST1!P••••••••• 59
Looping lor al\hile WHILE/ENIJI\'IHLE 60
JU11ping Around In Your 'rogrlln•••••••••••••••ooro 61
("",ttlng Out of Loop I'OP 62

ConditIonal Statements
The One-Lln"r •••••••••••••••••••••••••••••••• IF/mEN•.•••••••••••••
Ellher/Or Options IF/ELSE/ENDIP 64
Lots of Options ON 65

Handling Errors
S"tllng and Ralling Error Trnps TllAP 67
Finding Out "'lal's In th" Trap I ERR 67
A Progrll'll Exll11pl" Using TRAP and ERR 68
tlslng smp and CONT In Error fl'mdllng 118

HandlIng Strings
Gr.ttlng a a.ar.eter's NuTlber I ASC 69
Getting a Ntrnber's ("harseter ••••••••••••••• ! CRR$•••••••••••••••••• 69
Flnftlng Out the Leng th of a String ! LEN 69
Searching Thr-ough a St ring ! FIND 70
Finding Out the Loca t Lon o! a String ! ADR 70
(".cUing the FI r s t Part o r a Strlr.g 1 LEnt 71
G"tt.lng the Mlddl" 01 a StrIng ! MID$ 71
(".etllng the Last Part of a Strlr.g f RIGRT$ 71
Changing" String into a Nll1lber f VAL 72
ChangIng a Ntrnber Into a St.lng I 5THt· 72
Displaying Jlex ader- lma I NUllbers f HEX$ 72

Ualng the Gane Control Iere.
Uslnl{ the Padd l e s In Progrll11 1 PADOLF. 73
PressIng the TrIgger on the Paddle f PTRIG 73
UsIng the LIght. Pen in Your 'rogrll'll ! PEN 73
l!sIng the Joystkk the "9,,1 Way f STICIC 73
Moving the Joystick Left and RIght ! "STICK 74
MovIng the Joys tI ck Up and [lO\m 1 VSTICK 74
PressIng the Trigger on the Joy.tlck f STRIG 74

BASIC XE Relerence Manual Page Ix

Table of Contents

Graphic!
Introcluclng At ar I Graphics 75
8.. l r-c t t ng a Graphics Mocle•••••.••••••••••••••GRAPHICS•••••••••••••• 78
ChangIng t he Color Palette ••••••••••••••••••• SETCOLOR•••••••••••••• 78
Picking a Color COLOR 79
Plott Ing Points PLOT 80
Dr awl ng LI n .. s ••••..•••••••••••••••••••••••••• DRAWI'O•••••••••••••••• RO
Moving Arouncl t ho Sc r .. r-n POSITION 80
Finding Out ""at's on the Screen LOCATE RO
Coloring In Rex .. s XIO FIlI. 81

Player! Missile Graphics
Introcludng PIM Gr aph i o s 83
piM Graphics Convon t i on s 84
Se l e c t l ng a riM Graphics Mode I'MGRAPHICS 85
Changing the riM Co l o r Palette pM(X)LOR 86
Moving a riM I'MW)VE 86
Cr e a t i ng and Firing Misslles •••••••••••••••.•MISSILE••••••••••••••• R7
8.. 1ectlng a s Width PMWIDTH 87
Erasing a Player PMCI.R R8
Looking for a ('",II islon f BUllP 88
CI ..anlng Up ('011 isions HITCLR 88
('.ettln!: a riM's Mdress f PMADR 89
Using I'OKE and PEEK with P/M·s 89
Using KlVE with P/M·s 89
Using BGET and RPUT wl t h P/M·s R9
Using USR with r/M·s 90
Two Play.. Graphics Pr-og r ssns 90

Sound
Music end Respberrles ••••••••••••••••• SOUND••••••••••••••••• 93

Sorting Arreys
In t r oduc Ing the Array Sorting Stetements 95
Sorting 8trlng end Arithmetic Arreys ••••••••• SORTUP!SORTDOWN••••••• 98

Using Fixed Dete In Your Progrmm
rutting Fixed Date in Your Pr og r an DATA 99
Accessing the Fixed Dota In Your Progrlll1 ••••• •••••••••••••••••• 99
lleciding What Fixed Da t a to Access RESTORE 100

Accessing Memory
Looking at a Single By t e of MmlOry f PF.EK 101
Chang i ng- a Sf ng l e P.yt e of POKF. 101
Looking at Two Byt e s of Memory f DPEEK 102
Changing Two Rytes of DPOKE 102
Moving Your Computer's Memory Around •••••••••MOVE ••••••••••••••••• 102

Page x BASIC XI! Reference Manual

Table 01 Contents

Arithmetic functions
Making a Nunber Posltlve ••••••••••••••••••• 1 ABS I03
Getting Rid of Fractions 1 INT 103
Finding Out the I>lgn of a N nber f SGN 103
C"..anputlng Square Roots f SQR 103
Exponentiating a Ntmher f EXP 104
Canputlng Natural Logarltlms •••••••••••• • • •1 LOO•••••••••••••••••• I04
Computing C.onmon Logarlthns 1 CLOG 104
Using the Canputer's Random Nunbers •••••••• f RND•••••••••••••••••• I04
Se Iec t I ng Your o.n Random Nlmber s •••••••••• I RANDall ••••••••••••••• 104
An ExllYlple Progr"" Using Arltlmetlc functions 105

Trigonometric functions
Swapping Between Units 01 Messure ••••••••••••DEG/RAD•••••••••••••• 107
Canputlng Cosines 1 OOS 107
Canputlng Sines • • • • • 1 SIN 107
Canput Ing ArcTangents (TAN-I). I ATN 107
A Table 01 Derived functions 108

BASIC and Machine Language Subroutines
Accessing Subrout Ines by Line Nunher •••••••••OOSUB•••••••••••••••• 109
Leaving Simpl .. Subroutines RETURN 109
Introducing PROCEDURE and Its Related Statements •••••••••••••••••• IIO
GIving Names to Suhroutlnes •••••••••••••••••• PROCEDURE•••••••••••• 112
Notes and Warn Ings Regarrllng PROCIDtlRE 114
LeavIng Subroutines Elegantly•••••••••••••••• EXfT 116
Accessing Procedures •••••••••••••••••••••••••CALL••••••••••••••••• 117
AccessIng MachIne C"'de Subroutines •••••• • • • 1 USR•••••••••••••••••• 118

Appendices
A: ATASCIf Characters and Codes A-I
B: BASIC XE Memory •• 8-1
C: Canpatabllity with Atar ! 8ASfC C-I
D: Data Space In F.xtended 1IImlory D-I
E: Error Sltuations E-I

Index

BASIC XII: Relerence Manual Page xl

Pag-e xii BASIC XI': Reference Manual

introduction Extras That BASIC XE Offen You

Extras That BASIC XE Offers You

Of course BASIC XE provides all the commands available In stondard Atarl RASIC,
but that Is only the tip of the Iceberg. You can LOAD your SAVEd Atarl BASIC
programs Into RASIC XE snd make use of Its speed Immediately, but soon you'll
wllnt to take fuller advsntage of the extras that RASIC XE offers -- extras like:

Faster Program Execution New floating point math routines combine with the
FAST command to produce BASIC programs that execute at near-arcade speed.

Quick Access to the 130XE's Extended Now you can control and utilize
the extra 64k of memory In a 130XE, and you don't even have to be a program-
ming genius to do It. One simple BASIC XE statement makes all that space
available to your program.

Easy Program Fonnattlng and Editing Unlike other BASICs, IlASIC XE does not
care whether you use upper or lower case Ietters when you type In programs.
This alone can make your programs more rendable. Howev"r, BASIC XE will do
even more for you. It will automaticaIly prompt you with line numbers or
renumber an entire program at your request. Also, the LIST command has a
program formatter built In, thus making your progrnms easier to follow, no
matter how complex or Involved the)' are. Other editing features Include wrap-
around and keybosrd r"p"at. If you enter a program line that's longer than the
length of the screen, It wlll "wrap around" to the next screen line so that you
can view It. Also, If you hold down any key tor over halt a second, It will start
repeating.

Advanced String Handling BASIC XE makes string handling easIer and more
powerful at the same time. No longer must you DIMemslon strIngs betore you
use them -- Il ASIC XE can do It tor you. Also, you enn now group related
strIngs together In string arrays just like you're used to doing with numbers In
numerIc arrays. FInally, IlASIC XE Includes new operators and functions that
make string separation, concatenation, and searching a piece of cake.

BuUt-in Player/Mlss"e Graphics With other BASICs you can use P/M graphics only
If you're a computer wtz, IlASIC XE provides nine commands designed
especIally tor p/M graphics, and this manual shows you how several others can
be applied to PIM graphics. Now PIM graphics are as easy to control as
common playtleld graphics.

Easler Joystick Control Not only does BASIC XE support the paddle and joystick
functions available in Atar! IlASIC, It also adds several others that make
joystick Input easier to use.

Explanatory Error Messages Instead of generating a cryptic error number when
somethIng go". wrong, HASIC XE also gives you an explanation ot the error so
that you can diagnose and tlx the problem quickly. When you need more help to
solve the problem, you can look In Appendix E for a further discussion ot error
situations.

BASIC XE Reference Manual Page I

Row to Boot BASIC XE

How to Boot BASIC XE

Introduction

There's one thing you should do even before you hoot BASIC XE Cor the first time:
fill out and return the license 'jgr"ement that c nrne with Xf:. If you don't,
you won't be nd<lcd to OSS's users Hst , which means that not only wlll you not get
n .. w:,IDtters and updato info, but you won't ev en be able to gpt technical help from
OSf. whl'n you call. You must have J Ilcense aRr!'emen! on file to g.. t toehntcel
support! So pleas.. , pl enso , ploase , RETURN YOUR LICENSE AGREEMENT!

As you hay .. probably no t lo ed by now, B SIC XF. Is a supercarlrl<lg" and a disk. To
we All of the eapAbUitl"s of BASIC XE, you IIPed to boot wltb botb tbe cart. and
the disk. The process ts simple:

1) Turn on drtv e J, m,9king sure thu t ifs connected to your computer.
2) Insert the XE Ext..nslons Df sk in drive 1 and close the drtvo door.

Insert th.. flASIC XE c ar tr ldge ill your computer,
4) Turn on your computer and wait.

1'001'1 you wtll "pe R tine screen t e lllng you that the extensions are Ioadtng , Arter
this the screen will c-le ar and you will aee thp n ASIC XE copyright message at the
lop of thp sc roen , and lhe fAmiliar Ileady prompt wtll appear right below that ,
Now you're reAdy to program!

You can boot wtthout the extensions disk if you want. One of two things will
happen, depending upon whether the disk you hoot with has the ex tensions file on
it (instructions for c opying 1hr. extensions disk and rile are below).

I{ the boot disk doo not have the ex tensions file on it, 01' it yOIl boot wltbout a
drtv e , you can stllrUSf"BA:<:J(; X E. Ho wever , the will be available:

c s i.t., DEL, EXIT, FAST, l.eCAL, LVAR, MOVE,
PROCEDURE, RENUM,
t he fnsl ma th routtnes, and all P!M oommand s except H1TCLR.

IC the hoot disk doos have thp ex tensions file Oil It, yo u will be able to use all of
the capabilities of BASIC Xr., jU.1 os If you had booted wllh the extensions disk.

Racking Up lhe Extensions Disk

The ex tensions (;isk!!=' in 3inr:Je d ervsft y Atart DOS 2.(lg format, so duplicate it using
whn tev or command your nos to duplicate this disk format.

Moving the Extensions to Other DOS's

The xr. ex to nsions ar> in the fil" BASICXE.OSS on the extensions disk. If
Y0U want to use B: nos other than the one on the disk, rill you have to
<I" ts copy th.. nAI'ICXF..CSS fil" to your nos boot diskette. This file is in
st and ard DOS LOA n format, so c opying' it should not be a pr obtom,

Warning: RASIC XF. v,iIl not work with any "tr ansl ato r' program, nor will it. work
with nnSXL ..OUP or-n'lir-nos If you lise the ex t enstons (becnuso they to use the
same memory).

Page 2 BASIC XE Reference Manual

introduction How to Use this Manual
Speclsls Notatlona this Manual Uses

How to Use this Manual

This section might seem superrluous because everybody knows how to use a
manual. That may be true. but all manuals have their own Idiosyncracies. even this
one. nnd we thought you might want to know them.

Th" chapter groupings werc designed around topics so that you can find out
everything about a slng le topic without having to jump from place to place. Also.
the chapters themselves have been grouped Into larger topical groups (e.g., the
Grsphlcs and P/M Graphics chapters are together). with the simpler topics near
the beginning of the book. If you are looking for something specttte , use the Index.
It contains a multitude of references. Including subheadings within larger entries.
Finally. If a tuplc confuses you. try the examples. That's what they're there for!

SpecIal Notatlona this Manual Uses

Thts manual's job Is to teach you how to use BASIC XE and Its extensions without
befuddling you. To this end we have adopted several conventions In our
presentetlon of the languag". We list them here at the beginning so that you can
familiarize yourself with them:

Capitalized Words In the text of this manual , 1111 keywords and functions are
printed In uppercase to differentiate them from the other parts of a statement.

Lowercase Words In the text of this manual. lowercase words are used to denote
the various c1a ..es of Items which may be used In a program. such as variables
(ver), expressions [expl, etc.

Abbreviations In Section Headings If a statement has an abbreviation associated
with It. the abbreviation Is placed In parentheses following the full name of the
statement In the heading (e.g•• LIST (L.».

An of" Preceding s Keyword If an "f" preced es a Keyword In a section head Ing. It
means that the Keyword Is a function, not a statement.

Items In Brackets When showing the usage fonnat of statements and functions, we
..se brackets (t]) to surround Items which are optional In the format. If the Item
enclosed In brackets Is followed by an ellipsis (three dots). It means that Item mny
be used zero or more times In the format (e.g•• [exp....) means that you may use
0,1,2,3, or more expresstons , separsted by commas).

Items Stacked In Bars Items stacked vertically In bnrs indicate that anyone of the
stacked Items may be used. but that only one at a time Is permissible. In the
following example. you may dther use the OOTO or the GOSUB. but not both:

IOOTO I 2000
[oosua

Notes. Cautions. and WarnIng.: You wlll find these stnrtlng paragraphs throughout
this manual. Notes are simply Interesting asides, Cautions are just that (they point
out things to watch out for). and Warnings describe potentially catastrophic
sltua tlons and prohlems.

BASIC XII Reference Manual Page 3

BASIC XE's Operating Modes
BASIC XE Keywords and Symbols

BASIC XE's 0ee..ratlng Modes

Introduction

humans don't Ilke to do things the same wRy pvery t1mr, but computers do.
RASIC XE solves this problem by having three "opernttng modes". This helps keep
you and RASIC XE working on the snrn e wnvelong th, The following paragraphs
""""rib" these modes And out lin" what each Is used for.

Direct Mode This is the mode you're in whenever you see the "Ready" (or
"XE ReAdy" iC you've used tho EXTEND statem ent] prompt. For this reason
Dtrec t ModI' is sornettmes caliI'd Prompt Motip. Commands you Issue In this
mode are ex ecuted imm('tiiAtl'ly lI11rf'ctly). Most oC the time you will use this
mod.. only to tell RASIC XE what you want to do next,

DeCerred Mode You entl'r this mode when you use the NIIM command, type In a
line t ha t begins with a line number, or edtt A program line. Commands you
Issue in this mode will not be executed until you tEll RASIC XF. to do so. For
this r eason Defprr"d Mod" is somcttmes conNl Program 'IIode. When you t,,11
RA SIC XE to ex ec ut e a program li.e., some number-ed Unrs), It will use the line
numbers to dotormtne the order In which you want the program executed,

Execute Mode RASIC XE goes Into this modr- when you tpllit to start executing a
prog r em and will rcm ntn In It until the pr-og r-am holts. The halt can occur
bpCor(' t he program Is finished IC the program ('/lUS"S an error; or IC you press
BREAK or SYSTEM RESET.

RASIC XE Keywords and Symbol.

Th" following table show. all the word. and symbol. that mean something special
to RASIC XE:

DATA FPF, LVAR RtiN TRAP
Dr.r; GF.T 1'01"1'" t'NPRO'!'ECT

A'II' nr.1. mSlm MISSII.E POI;E SET \ISING
ASf; n1M noTO MOVE POP- SF.TeOLOR USR
AT:'I DIR NI'W POSITION SGN VAL
Ilf;FT !'OS NEXT POINT VSTICK
/llnAn DPEEK HlTeLR NORMAL pROCr.nURE SORTD'JI\'N WHILE
nnrr nPOKE IISTJCK NO'!' Pllm-FCT SORTI.'P XIO

DRAWTO IF NO'J'E PTRIG 80l1NJ)
Rlr.!P ELSE INPIJI' NliM nrr SCm # $
IlYI' ENn INT ON RAn STATUS % &
rAl.L ENnIF INVERSE OPEN RANIXlM STF.P ()
CITR ENf'tllII LE 1.F.Fn OR REAn STICK /
CLOAn r.I\".ER PAOOLF. RI'M STOP
ClJJG I'IIASE LET pEF.K RENAME <
CWSE ERR LIST PF.N RF.Nl.M STRIG <= <>
CLR EXIT LOAD PLOT RESTORE SY!; >
rOI.OR EXI' LOCAL pMADR IIETlJRN TAR >= 1\

r.ONT EXTENn LOCATE PMCLR RGET THEN
COS FAST LOn RIGHH TO
CP FIND Lor-,,,,,, ""'GRAPHICS liNn TRACE
CSAVf. FOR LPRINT PMMOVE RPIJI' TRACEDFF

Page 4 BASIC XE ReCerence Manual

Introd uctlon

adata

aexp

alphanllllleric

aop

Arithmetic
Expreaalon

Arithmetic
Operator

Arithmetic
Variable

Array

aver

Binary

Channel

cname

CommAnd

Device

exp

Expreaalon

A G1ollllaryof Terms this Manual Usee
adata to Expreaalon

A Glo&/I,,!l..2' this Manual UlICS

:';hort Cor "ATASClI Data", Any ATAl'CII character, excluding
commas and carriage r e turnn, (sceDATA Cor more InCo.)

Short fo.r "arithm('lIc expr"ssion".

The leU",.,. A through Z (either lower or upper cese) and the
digits 0 through 9.

!;'l·:')rt tor "arithmetic operator".

An expr-esston that eli alu6t£ls to n number, For more tnfom1a-
lion, see the Rxpresslons chapter.

" unnry or bl,,"cy (operator thot perfonns a math operation.

" location where a single number Is stored,

A onc--dtmeustcnnl structurc In whl,'h each element (cell) Is
uniquely described by It. clement number. The Variables chapter
gives a more In-depth deflnlUon.

Short for" Arithmetic Varlnble".

AnythJnff that has two states (nn/off, up/<lown, acllon/stasls,
etc.\ Not simply "a number system based on powers or 2".

See the Introduclng Atnrl 1/0 sec tron of the Beginning Data
Input/Output chsprer disc usston,

Shorl for "Calling Nllme". Th" nnme ,.."d to CALL a
PROCEDUllE;mnybe',lth"r a .trlng constant or svar , Note:
aubstrtngs and savars r.16Y be usnd,

An)thlng you 1,,11 BASIC XF: to do Is" commandj so both state-
ments and functions arc commends, 11' you give Ii command in
mrect Morle It 'viII he executed Irnmedla tef y, but Ir you're In
n"ferrer1 Mode RAlnC XE will not the command until you
t,,11 It to do 80.

A pel'lpherllJ (add-on) thn t you c an use Cor I/O. The Inl"odurlniJ:
A larll/O section of the Beginning Data Input/Output chapter
di;;;:;;;;;.e;; this term In further derail,

Shott for "expression".

An expreseton is any legal cbmbination of variables, constants,
oper-ators, and functions used tnge:thcr to compute 8 VAlue. Fx-
pr esaions can be clther srlthmetic or st.rlng.

BASIC XB Reference Manual Page 5

A Glollllary oC Terma thia Manual Usea
FloaUng Point to pexp

Introduction

FloaUng Point Numbers r"prpscnt",\ using a dnclmal point (4.5, -2R.49)

filespec Shor t for "CUe specifier". A tllespec Is used when when doing
some t ype s of 1/0. You can tlnd a complete d .. Clnltion oC this
term In the Introducing Atarl 1/0 section of the Beginning Data
InputlOutput chapter.

FuncUon A Cunctlon is a subroutine built into th .. comput.. r so that It can
be callcd by your progr-am, Functions and statements dltrer In
thnt functions must be used In expr..sslons to aceompllsh thetr
task. whe r-eas statements are splCsufflclent, COg (Coslne}, FR E
(rem etntng memory}, and INT (Integer) ore ex amptes oC functions.

Integer A whol e number (not 0 fraction). Integers may be either positive
(4, or n ..gatlvp (-4, -183).

I/O ghort for "Input or Output". this t errn rpfMs to th.. trDnsf"r of
dnta b"tw.... n your computer or t1ASIC program and peripheral
devices like prlnt.. rs, disk drives. etc.

Keyword

IIneno

Literal String

Logical
Operator

lop

Matrix

Matrix Variable

mvar

Numeric

Operator

pexp

Page 6

Any word that means something sper-Ial In the RASIC XE
lenf!uAJ!p.

Shor t for "lIne number", A constant that Idpntlfles a particular
program Ifnc. Must be an Intcg ..r from 0 through 32767. Line
numbertng determines the order of progrnm execution.

A synonym of Constant".

An operator that performs a comparlslon where the result Is
ef ther "true" (J) or "false" (0).

Shor t for "Logical Operator".

A t wo-rttm enstonal structure composed of separ-ate e]pments.
Fach plpm"nt (cell) In a matrix is uniquely described by Its row
and column number;

An arlthm .. tie varlabl .. of 1 (an array) or 2 (matrix) dimensions.
gec the sec tton of the Variables chapter Cor more Info.

Short for "matrix variable".

A synonym of" Ar-tt hm ettc",

Operators orp used In expressions to tr-lt RASIC XE how It should
»v al ua t e the VAriables, eonsrants, and in the expres-
sion. Th .. re ore two operator arithmetic and logical.

Short for "PAssing Expression". An whose value will
be passed possed via CALL to a PROCEDURE, or passed via
EXIT bao k to the CALL. pexp may be an expo ovar, svor, sav ar ,
or mv ar-, Note: svars, sav ar s, Ant:" myers be preceded by R l ,

BASIC XE Reference Manual

Introd uc tlon

pmnwn

pname

Program Line

rver

savar

aexp

Statement

A GlolISary of Terma thla Mantral Uaea
pmnwn to VarIable

A player or mIssile number In P/M Graphics. Players are nwn-
bered 0-3, and missiles 4-7.

Short for "Procedure Name". The name used to identify a
PROCEDURE. pname must be R strIng constant.

BASIC XF. program lines are made up of three elements' the line
number, the program statementts) (multiple statements are
separated by colons), and the line termInator (a RETURN). In an
actual program, the three elements mll(ht look like thIs,
100 PRINT "I'm a program line.",GOTO 100
If a program lin" will not fit on on" screen line, It will wrap
around to the next screen line so that you CRn see the entire
program lin".

Short for" ReceIving VarIable". A var which will receIve a the
value of A parameter passed eIther from CALL to PROCEDURE,
or from EXIT back to CALL. Note: svars, savars, and mvara

be preceded by a l,

Short for "StrIng Array Varlsble".

Short for "StrIng ExpressIon".

Statements are subroutlnes built Into RASIC XE that will perform
specifIc tasks for you. Statements and functions differ In that
functions must be used In expressIons to accomplish theIr task,
whereas statements arc selfsufflclent.

String Conatant A group of characters enclosed in quo tat.Ion marks. "OSS Is the
best" Is a string constant. So are "1234567R9" and " "ello".

String
ExprellSlon

String Variable

StrIng Array
Variable

Subatring

svar

ver

VarIable

An expeesston that evaluates to a string constant. May consIst
of an sv ar , an savar element, a string constant, or 8 function that
returns a string constant.

A variable where a singI" string Is stored.

An array variable whose elemf'nts are strings.

Simply a part of a strIng (e.g., "abc" Is a aubstr'Ing of "abcdef"},

Short for "String Variable.

Short for" Variable".

This Is t he term used to describe a quantity wblch may (or may
not) change. In BASIC XE, there are two basic types of
variables: strIng and arlthmetlc.

BABIC XE Reference Manual Page 7

Your Additions to the Glossary

Your Additions to the Gloss.!!!I

introduction

Page 8 BASIC XE Reference Manual

Variables Variable Types, Names, and Maximum
Arithmetic Variables

Types of Variables

BASIC XE supports two basic types of variables: arithmetic varlabl"s and string
variables. In addition, It supports both arithmetic and strlnl!:s arrays, and
arithmetic mBtrlces. Arithmetic vartables, arrays, and matrices ar" used to store
numbers, and may be used only where numbers are reqUired. String variables and
arrays store character strings and may b" used only where a character string Is
required.

Variable Names

All variable names must start with an alphabetic Ietter , but the rest of the
charne ters In the name may be otther letters or digits. Also, variable namea must
be less than 120 characters long. Finally, string varable and array names must end
with the dollar sign (,) eharactee, The following examples should make these
requirements clearer:

Arithmetic Names
Rate
Playerlscore
Temp

String Names
Nome$
A$
TI tle$

Number of Variables

BASIC XE limits you to a maximum of 128 vartables, If you need more than 128
(which Is unlfkely}, you might use elements of an array ss Individual variables
Instead of having a separate name for each. You might also use LOCAL to create
reusable private variables. To clear the variable nam e table of extraneous names
(possibly after an error 4), LIST your program to disk or cassette, type NEW to
clear the variable name table, and then ENTER your prog ram back Into memory.
We suggest that you lise SET 5,0 and SET 12,0 before doing this.

Arithmetic Variables Cavar)

Arithmetic variables are used to store numbers, and are the most common variables
used. Here are some examples of arithmetic variables In use:

JII Input "ayar Valu,,» ",II
III print ··N. IIJK
JZI print "II"Z: ",II"Z
JII Print "0/11: .. '11.... 5
J4. print "."'11: .. CII)
J5. print "lnCII): ",LoICII)
Jil print "IOICII): ",CIOICII)
J7. print ;50to JI.

BASIC XE Reterence Manual Page 9

Arithmetic Arrays and Matrices

Arithmetic Arrays and MAtrices (mvar)

Variables

An arithmetic array Is a group of separate ar lthmcttc variable" (callpd elements or
subscripts of the array) which share a common name, and may accessed only by
sp<'c1fylng the number of a given plement as wp\l as the nam o of the arithmetic
array. If you Ihink of an array as a strmg of penrls the IdeR Is easter to under-
stand. If you want to list the worth of each pearl (ror Insurance purposes), your
Jist might look like:

Pes r l I: $1000.00
Pe ar I 2:
Pe a r l 3: $1125.00
Pcarl 4: $1100.00
Pparl 5: $1050.00
Pcarl 6: $1200.00

Translated Into a RASle XF arithmetic array, your list would be'

111 Ii" p.arl15'
111 P.arlll':1111
lZI P.arlll':'51
131 p.arIIZ':1125
141 P.arI13':11.1
151 P.ar'14':1151
1&. P.arI15'=lZI1

Notice that the etr-m en ts of the RASle XE ar-l t hm e tte array nrc numberPd starting
At zero. This doosntt seem right because we humans don't think or zero 8S a
number, but - as faf AS computers and mathematicJans are concerned - it is.

The DIM sta ternont on IIne 100 Is used to tell RASle XE how many .. Iements yon
WAnt reserved for the arithmetic array nam ed "Pearl". DIM is discussed in greater
d e ta il In Its own section later In this chapter.

An arithmetic matr tx Is similar to an arithmetic array, <'xcept that It Is two dlmen-
ston nl , This means t hn t there are two numbers to spectry 8 given

8 row number and 9 column nwnber. Our string of pearls Analogy can be
extended to describe matrices if you consider a matrix 8S 8 bunch or pearl strings.
Now, your price Hst would look something like:

Page 10

String 1
Pcarl I:
Pea r l 2,
Pearl 3:
Pearl 4: $1100.00
Pearl fi:
Pearl 6:

Strinll 2
Pea r I 1, $A75.00
Pearl 2: $107fi.00
Pearl 3: $1300.00
Pearl 4: $990.00
Pearl 5, $1250.00
Pearl C: $1035.00

String 3
Pea r l I: $1100.00
Pearl 2, $9AO.00
Pearl 3: $1115.00
Pearl 4: $1120.00
Pearl 5: $890.00
Pearl 6: $1225.00

BASIC XE Reference Manual

Varloble. Arithmetic ArraYll anti Mlltrlee.

Translated into a RA81C XE arithmetic matrix, your list would he:

III Ii. p••rlst2,5'
III p••rlsCI,I':1111:P.ar,stl,IJ:175:'••rls(2,IJ:l111
121 ' ••rlsCI.1J:'5':'••rISC1.1J:1175:P••rtsCl,IJ:'11
11. p••rlsCI.1J:1125:P••rls(l,2J:l111I'••rlsC2,2':1111
1.1 , ••rlsCI,l':Jlll:'••rlsCl,l':"I:p••rlsC2.JJ:1121
151 , ••rISCI •• ':1851IP••rlsCl,.J:1251:p••rlsC2,4J:I'1
J.' p••rISCI,5J:1211IP••rlsCl,5J:lIJ5:p••rlsC2,5J:1221

A. with orlthm..ttc arro).. , the Clrst "Ien,ent Index is 0 rather than I, an the Clrst
on the first string is acee-ssed u"lng tho subscript (0,0). The Clr.t 0 Is the

number oC the pearl string [the row IllUn""r), lind the second is th.. number oC th"
Individual {If'orl (the column number). This analogy might lead you to belteve that
a matrix Is just on array where each el"ment Is It.elf an nrray (our list i. one oC
strings of pe arts, and each string of pearls Is a r:roup of Indivi<luol pearts), This
conception or matrfces is, 1.0 essence, correct and Is very usnrul when trying to
manipulate matrices.

Whpn you use a single clement of on arithmetic orray or matrix, you are actually
using 8 single number (which I. what an arlthmf,t[" variable Is), This means that
avar, arraY(elementl, and matrbe(row,eolu",n) may all be used when"ver a number Is
wonted.

BASIC XB Reference Manual Page 11

String Variables
String Array Variables

String Variables (!lVar)

Variables

Strlnl(variables are uSNI to store literal oC charecters, A literal string oC
characters Is simply some charac te rs enclosed In double quotes; Cor example,
"This string .nclos.d in quotes is a literal string"
".u.....rs in quotes are stringS too - 123.5"
"fven control charct.rs are - .I'h"""'"
are all literal str ing s , As mentioned earlier, string variable namea are just like
Arithmetic voriable names, except that they must end with a dollor sign ($).

Refore you use a str-Ing variable, you need to tell RASIC XE the stze (maximum
number oC characters) of the variable. This Is done using the DIM (dimension)
St8 tornen t as fo11ows:

DIM 8tring$(66), Af(IOI

Note: When you rnnmpul ate strings a ehoracter a t a time, remember that the
element numberIng begIns at J, not 0 (as with arithmetic arrays and matrices). For
example, If you want to get the first character of A$ (which contains the string
"ABCDEFG"I, you would use A$(I,n, and get "A" as the result. If you try to get
the" An by using A you wilt get an error.

Bonus: nASIC XE can Automatically dimension a string var-tebte for you If you
don't manually DIMension It. For more Information about this feature see the
discussion of SET II,aexp.

String Array Variables (savar)

A string' ArrAy Is very strn tl ar to an arithmetic array, except that each element is 8
string voriable, not an arIthmetic variable.

sr ring array v artabl es r esemble string variables in three aspectse their nam es must
end with a dollar sign, they must be DIMensioned before being used, nnd their
£"lpment numbering- bf"gins lit 1, not 1"'. However, thp.re are two dimensions to a
at r lng array: the number of strings In the array, and t he length of the strings. The
following examples show how to spp.clfy both of these dImensions:

DIM Sarray$(4,40I, 11$(10,100)

This ex am pl e first dfm en sl ons 8 string array called to contain 4 str tngs,
e ach 40 charac ters tong, And then dimensions" A$" to 10 strings, each 100
C'hRrRC"ters long.

To access one of thf' strings in a string array you specify t he string's number
the first string is number I, not 0) followed by a semicolon (;1, as

folio".. :
188 Di. Test$13.5)
ill '.st$(l;J:"This II

12. T.st$(2;':"is a "
131

you may notice, s8var{element;) Is equtvaten t to svar, and may be used
wherever svar is used , unt ess stated otherwise.

Page 12 BASIC XE Reference Manual

Variables

Fonnat:

Dill

\

mwa r (aeXPl f ,aeXP2])!
DIM svnr(aexpl) [••••]

savar(aexpl,aexp2)

Dill

The DIM statem<>nt is used to reserve space for arithmetic arrays and matrices.
and strings and string arrays.

For arithmetic arrays DIM reserves space for sexpl +1 arithmetic elements. For
arithmetic matrices it reserves space for aexpl+l rows of aexp2+1 elements each.
The "+1" Is there because arithmetic indexing begins at O. thus giving you aexp+l
total indices.

Dill reserves space for up to aexpl characters when allocating strings, and space
for aexpl strings, each of up to aexp2 characters. when allocating string arrays.

The following examples illustrate the use and effect of the DIM statement. The
first one reserves 101 arithmetic elements for an array named AI. The second
allocates space for 7 rows of 4 columns each for a matrh cRlled Grid. The last
example reserves '0 bytes for the string BatrS, and then allocates 100 strings.
each of up to 40 charec tera, for the string array FriendaS.

J" Di .. uu••)
Jl. Di.. ,ri.(I.!)
12 ••i ...str$(2.).Fri.n.s$(1•••••)

Note: BASIC XE Is e apable of automatlcRlly DIMensioning string variables. For
more infonnatlon, see SET H.aexp.

BASIC XE Reference Manual Page 13

LOCAL

LOCAl.

Varlablea

Fonnat: avnr l r ,8vor2 ••• 1
ExII'11ples : LOCAL T",npl

320 LOCAL

The LOCAL st a tern r-nt allows you more n..xihllity In your programming because It
enables you to have temporar-y arithmetic variables within PROCEDURE and
GOSIJB suhroutin ..s, TIll' WAy LOCAL works is v ..ry simple. When a LOCAL state-
ment Is ex ecut ed , All av ar nom ..s (no mvars, svara, or snv ars) followlnK It become
private until the nex t EXIT Is encountered, What does 'become private' meAn?
Sirn pl y thnt you ran chonr." the value of a I.OCAL avar within Its
LOCAL/EXIT bounds without Affec tinK Its value outsldc of these bounds, as If you
had a private copy of the variable. Wh"n you usc LOCAL, you don't have to worry
nbout conflicts between routines In your program that use variables with the same
nam e,

A simple example wl1J help:

11 TI.t=123.561:prlnt 11.'I,t
21 50 sub .1:Print 21.'lst
38 End
.1 Loc.l 'lst:Print .1.'lst
51 'lst=I.5.321:print 51. '1St
liB Exit
Not.. the thnt PRINT statem ents pur-poscly displAy the current IInc number as well
ns t he value of Test. This Is simply to make tractng the fiow of the program
ea str-r , flo ..s It surprise you to find that the output of the above program will look
something like this?

JI 123.561
.1 lll.561
58 1.5'321
%8 nU561

Ll't's cxamine that pr og r arn a little closer , Line 10 Is simple enough - we just
asstgn a v alue to the varlable Test and verlfy that It has been accepted. In line

WI' first GOSIJB to a routine and then Again display the contents of our
variable. No te that in the progrsm's runnlny, this PRINT is the Inst thing executed
(other than thl' END!. Une 40 begins the int.. resting part of this program. We
decf nr-e thot Tl'st Is a LOCAL variable nnd, once A!'tRin, displny its value. Line 50
is a repeat of line- 10 ex cept that we assign a cUtrerent value to our no w-pr iv ate
var lable No te tha t t he PRINT v"rlfles our change, FinAlly, In line 60, we
USI' EXIT to r estore Test to Its orlglnnl VAlue, ASshown by the PRINT In line 20.

The point of All this WAS to show t ha t our suhroutlne (lines 40 through 60) could do
wua t it liked with the LOCAL variable without affl'cl!ng Its value In the rest of
the program.

Bonus: when you POP A LOCAL v arfabl e the non-private value is restored, so you
can USI' LOCAL and POP to create private variables even when you're not In a
subrout ine,

Pnge 14 BASIC XE Reference Manual

Variables

Notes and Warnings Regarding LOCAL

Notes snd Warnings
Regarding LOCAL

Note: the fact that LOCAL may be used with GOSUB subroutines Is not an
accident. EXIT was specially designed to find out what type of subroutine
(PROCEDUR E or GOSUB) It Is terminating, and handle the returning condition
appropriately. This small fact alone allows you to modify your existing programs
to use LOCAL variables without having to change all GOSUBs to CALLs. Also,
there are occoslons where It could be advantageous to use GOSUB Instead ot
CA LL. In particular, GOSUBblng to an absolute line number Is significantly
quicker than ony other type ot subroutine access when your program Is In
FAST mode.

Note: variables do not change value when they are made LOCAL. You can see this
In the example eorller In this section. The PRINTed value of Test In line 40 Is stl1l
1224567, "ven though It has been made private. It you want your LOCAL variables
to be zeroed before you use them, you must equate them to zero yourself.

Note: since you are stl1l limited to 128 different variable names, you might
consider using the same LOCAL variable names In all your subroutiiiiiS It you are
pushing the name limit. For example, you might start each subroutine with the line

Each subroutine then has tour variables avsilable exclusively for Its own use, and
you have used only tour names trom your maximum ot 128.

Technical Note: LOCAL pushes the current value of on avar onto BASIC XE's
stack when that variable Is mode private. When an EXIT Is encountered, the value
Is popped ott the stack and Into the avar, thus restoring Its previous value.

WarnIng: you may use LOCAL at the beginning of subroutines that are
termlnsted by an EXIT (not a RETURN), unless you POP the previous values
before RETURNing. For more Info, see POP•.

BASIC XE Reference Manual Page 15

Assigning Values to Variables

Assigning Values to Vorlablrs

Variables

The as"lgnm"nt sta tem ent is used to IIsslgn a value to a v ar iable, und is or the
g"neral form varlable=expresslon. The varl"bl" and expression must b .. of the
same dnta type (arithmetic or string) or you "'Ill get nn error.

Arithmetic
Arf thmet.lc assignm"nt is the slmpller of the t wo , so we'\1 discuss It first. The
syntax is simple: avar=aexp, hut the ex tensions ure numerous. When you remember
that subscrtpted arithmetic nrrays and matr-ices are Cunctlonally equivalent to
simple arithmetic variables, all of the following become valid'

111
121 Ari1hvlr=27.4
131 Kl1rixll.IJ=27.4

String AsSignment
assignment c sn be done two ways: by substring nnd by entire string. nefore

dtscusstng these two met hods, we to discuss whnt "string" and "substring"
mean. The Collowlng table d"rlnes these terms when used as both as the source
and c1rsttnAtion in an operation (('.It., in Af="ahc", Af is t.he destination, and "nbc"
Is the source).

String

S$(n)
S$(n,m)

As
characters .1. .U:N vnlue
chnractcrs n •• LEN value
eharacters n ••m

As Destination String
characters I •• DIM value
charncters n ••DIM vnlue
characters n ••m

Assigning nn entire string is ea"y; the Corm is simply svar=sexp. Whatever svar had
in it beCore Is wiped out and sexp is put in. The LFN value Is set to the length of
the sexp strtng , Here are some examples:

11
21 51$:111' string ...nt ..
31 s1rin, iusi,nMn1"

Sub st r ing assignment can be done ustng either the fo rm at svar(n.m)=sexp or
svar(n)=sexp. In the rtr-st case, c harac te rs n through m (Inclusive) of svar wlll be
e hanged to sexp. IC sexp evaluates to a string longer than the specified
dr-st.tns tton substring, only the characters up to the substr-Ing length will be
assigned. If the sexp string has C..wer characters than the destination substring,
or.ly LEN(sexp) c ha r ac t er-s wlJl be changed in til" subst r ing , Also, nASle XF. wlJl
upd a te the length o f svar If the SUbstring asstgnment makes It longer. The second
method of substring eestg nment replaces n through the DJM value of svor with the
sexp string, And then updates the If'ngth of svar , The ex nmple on line
Ill us t r ates this type or substring assfgnment. The o thors show the two subscript
method:

•• I "us. DIM'S fro...bOYIf"
50 S1$="AIICD"
61 SlS="AIICD1234"
71
III Kf - PreciSion Son.are"
'I S2S11I'="'RON "S2S=IIASIC HE 055"

Page 16 BASIC XE Reference Manual

Variables Assigning Valuea to Varlablea
LET

To assign a value to a string errey [sav ar}, firot you specify which string elem ..nt
of the savor you to use (followed by a oemi-colon), and then treet It just like
a nonnol string (svar), The ("lIowlnl: exampies help clal"lCy this procedure:

18 5.'Cll,.I)
21 5.'(1;)=". str,nt .. "slIv.r verSion of 28 ...ove"
31 '.'(2:) ="tlIlC."
... S.SC2;4.IJ:"1234'!;6":A•• "s.av ..r version of .e .bov.e,
51 5.'CJlJ="IA51C Xt" - 50ft••re"
'I "sav.r v.rSion of 'I ."ove"
RASIC XE also nltows you to do string concatenatlon (t"eklng one string onto the
end of another) ecsily using the assignment sta tement, To concntennte strtngs,
simply chnnge tlUI sexp In thp string assignment fonnat to aexpl,sexp2,aexp3,....
sexp," I. then "'>ncatenated to aexpl, sexp3 Is concatenated to the result, and so
on. The followinp; examples show concatenation:
II A'CII),IISC2I1J,C$C.IJ
21 .S=" frOM 05'"
31 1I'="IA5IC XE".1 &.=1., ... hot hn.ull.... , A'
n I$=",AS
'I print c,:print liS
Note that line 50 Is equivalent to

51 I'CLenCI'J+IJ=A'
Note: It Is possible to store Into the middle of a string by using subscrlpt.lng;
however, the beginning of the string wlll cont.aln garbage or nulls.

UT

Fonnat I
Example:

LET <assignment statement>
LET OOTO=3.5
LET

I.ET HUOWS you to nsslgn values to variables wHh names that start with or Rre
Id.,ntlcal to a k.. ywor-d, In th.. f'rst exampl e, LCT allows GOTO to be used as an
arithmetic vorlnble ratber than 8S the GOTO statom ent., The second allows thc
use or LETTERS$, the first the Jetters of which are the keyword LET.
Th(-'re nre 8 ke ywords which CANNOT be need 8S vnriable names even when
you use LET. They are thf' unary 101(Icol opera lor NOT, and 011 the function names
(ABS, LEN, "tc.) Here Is on exampl.. of whnt wlJl happen It you try to use NOT as
the first. three letter. of a name. Type in this program:

10 CSHIIRP=37
20 Lr.T NOTF,=CSHARP
30 PR I!\'T NOTE

When you RUN It, a "I" will get printed on the sc reen, not a "37". It)'OU LIST the
prog..m yo u will see why. Line 30 Is llste d as

n 'rlnt Rot

beo ause BASIC XE does not allow "NOT" as the start of a var-Iabl.. nom e and Inter-
prets it as the keyword NOT.

BASIC XB Reference Manual Page 17

Space For Your Notes

Page H

Spllce For Your Notes

Variables

BASIC XE Reference Manual

Operators

Operators

Arithmetic Operatore

DASIC XE has two types of operators: Arithmetic Operators and Logical
Operators. }8 you will see In the expressions chaptcr, "Ither of these two types of
operators may be used In arithmetic expressions, while neither may be used In
string expressions.

Berore dlscusslnjf the-se two types or operators, a reminder or the meaning or
'binary' Is nceded. As stated In the glossary, this term does not mean simply "a
number system based on powers or 2, In which 0 and I are th" only digits". When
'binary' Is used to mean this, It Is an abbreviation or 'binary number system', and
applies only to numeric rcpresentatlons within this sY"tem. Anything which has
only two states [on and orr, up and down, action and stasis, etc.) can be considered
binary. When we ar.. dlseusslnjf operators, 'binary' means that the operator
reqUires two operands. For example, • Is a binary operator because It multiplies
one value by a second (4·3 means something, whlle·3 means nothing). Similarly,
'unary' Is used to describe an operator which requires one operand (- Is a unary
operator when we usc It to signify that a number Is negative, e.g. -5).

Arithmetic Operatore (aop)

BASIC XE supports 8 binary and 2 unary arithmetic operators. The binary ones
are:

•
I

"&,
'l6

Funct Ion
Addition
Subtraction
Mol tipllcation
Division
Exponentiation
81 twl se AND
BI twlse OR
Bitwise EOR (F.xcluslve OR)

The first tour are stralghttorward enough since they are the arithmetic operators
we use all the time, but the last tour require some explanation.

The "operator Is used to raise a number to a specified power. For example, 4"3
simply means "multiply 4 by Itself 3 times", or 4·4 ·4, which equals 64.

The &, " and 'l6 operators allow you to perrorm bitwise operations on positive
Integers up to 65,535. It you use them with non-Integers (e.g., 4.3, etc.),
the number will be rounded to the nearest Integer before the operation. It you try
to use them with negative numbers an error occurs. The tollowlng tables show the
results ot comparing two bits tor each or these operators:

Bit A Bit R Result
-1-&-1-=-'--
o &, 0
1 & 0 0
o & 0 0

BASIC XI! Reterence Manual

Bit A Bit 8 Result-,-,-,- -,--
n '1 1
1 ! 0 1
o '0 0

Bit A Bit B Result
-1-"'-1-=-0--
o 1 1
1 0 1
o 0 0

Page 19

LogIcal Operators Operators

The lollowlng exarnpl es illustrate the r osul ts ol usIng each ol these bltwls..
operntors wIth the operands 5 and

a. ex"le
00000101 U,)

a. 00 I nOIII (3)
'iiiiiiOiii01 (5)

eXlmple
00000101 (5)
00100111
(1)100111 (3n)

'lI> eXlmple
OOOOnlOl (5)

'" 00100111 (39)
00100010 (32)

Th .. two unary arlthm .. tic operators are plus (+) and mInus (-), and are used to
dr-no te the sIgn (positlve/negntive) ol a number. f'or exnrnple , +5 means "positive
rive" And -5 means "negattve rive". Note: Il you do not speclly the algn of a
number, II ASIC XF. assumes thnt the number Is positive.

LogIcal Operators (Iop)

IIASIC XF. supports tllI'ee tYP"s ol logieR! operators: relatlonsl, unary and bInary.

The relational operators compare two expressions, givIng a boolean (true/lalse)
resuIt, and are rnost fr equently used In condf tlonal stntements (I."., the IF stnte-
mental, They mRy n lso he used in arithmetic expressions, returning a) if the
relntion Is true , And R 0 if' it's faJsE".

< The llr.t exp is less thsn the second expo
> The first exp Is greater thAn the second.

TI,e exps a'e equal to eAch other.
<= Th" llrst exp Is less than or eqUAl to the second.
>= The first exp Is greAt"r t han or equnl to the second.
<> The two (!'xps are not equal to each other.

Examples ol t he r-elattonal lops msy be found In the Expressions chapter.

The unary Iog lcnl operator is NOT, and Is used to reverse the result ol an
r-xpresston, For example; the "xpression 2<3 is obvIously true, but the expression
NOT(2<3) ill false, since NOT inverts the truth ol"2 is less thsn 3".

Ther r- are two binary logicnl operatoras AND snd OR. Do not "onluse them with
th" bltwls.. blnnry arithmetic operntors a. and!. Tbey are not the same! AND and
OR are used to create compound log te al expressions like

IF OR THFN OOTO 400
WHILF. AND Rnll=O

Note how n,e,e operators are dtrfere-nt. Only one of the two operand expressions
must be true lor the logical OR to be true, while both must be true lor the logical
AND to be true.

Page 20 BASIC XI: Reference Manual

Operators

Operator Precedence

Operator Precedence

Operators require some kind of precedence (a defined order of evaluation) or we
wouldn't know how to evaluate expressions like 4+5-3. Is this equal to (4+5)-3 or
4+(5 -3)1 Without operator prer.edence It's Imposstble to tell. Il ASIC XE's normal
precedence Is very precise, as shown In the followlnlr tab)". The operators are
listed In order of highest to lowest precedence. Operators on the same line are
evaluated left to right In an expression.

()
< > = <= >= <>
NOT +-
A

"'ll
- I+-
< > = <= >= <>
AND
OR

Paren theses
Rei. lops In String Comparlslons
Unary NOT lop, Unary Plus and Minus aops
Exponentiation
Bitwise F.OR, OR, AND aops
Binary Multipllcatlve aops
Binary Additive aops
Rei. lops In Numeric Comparisons
Binary AN fl lop
Binary OR lop

If you're ever In a situation where you'r.. unsure of the evaluation of an
expression, use part>ntheses to Insure the proper order of evaluation. Examples of
operator precf!dence during expression evaluation can be found In the
Expre""lons chapter.

BASIC XI! Reference Manual Page 21

Space For Your Notes

PAge 22

Space For Your Notes

Operators

BASIC XE Reference Manual

Expressions

Z,.presalons

String and Numerle Constanta
Internal 'onnat of Numbers

Expressions are construo tlons which Dhtaln values from vartabtes, constants, and
functions USing n specific set of operatora, BASIC XE supports two types of ex-
pressions: arttbm ettc (aexp) amt string Isexp}, Refore IIl"se two types of
expressions something needs to be said about the constants SIC XE allows•

.Strl!'.!L"nd Const.ants

String constants are freqll"nUy' called literal strings because they are just a group
of characters enclosed In double quotes {"J:
"ThiS st.. inl 4PIIC 10.4Pd tn •• is ... t .. tllll cOlIst.nt"
...u 4Pr. tn ."I! st.. tnlls too - 12345"
"50 41 cant..ol Ch...ct4P....... - .",401I\.0Il,.."
To get a double quo te Into a strIng oonsfant , lise two double quotes In a row (no).

RASIC XE allows you to enter nU/TIerl" constants (numbe..) In one of two ways -
decimal or hexadecimal. Oe"lmal numbers may either be Integers , fractions, or
scientific notation. The followl.ng examples illu.1trate these three types of
numbers:

Integers
4027
-2

frRctlnns
- -67.254
325.04

Sci. Notation--4-.:rm--
23.41':-14

The "E" In the scientific notation examples slonds for "Exponent". The number
following Ills tile power of t.,.n (e.g •• 4.:13F2 means "4.33 • I n2" , or 433).
Ilpxadecimal numbera can only be Integers, and the digits must be preceded by n
dollar sign It), as In th" foll,)wlnll exnmplps,

t4,.,0 -*OA 'OFF
-'E -'7820 tFFFF

NoUce that the unary minus (d"notlng n negatlv .. number) precedes the d(\IIar sign.
The maxiJnum hexadecimal valu.. allowed Is $Ff'FF (65,535 decimal).

Internal Fonnat of Numbers

Note' this sectlnn Is I'rovlded tor those of you who are Interested In the technical
aspects or XE. You con skip this sec tie.. ,,::thDut Impairing your ability to
use BASIC XE.

All numbers In IIASIC XE are IIlnary Corh'd neclma! (Oeo) n(\atlnll pointing point
with n five byte (In ncn rUglt) mantissa snd n one byte ..xponent, The most
sl"nlncAnt bit of the exponent Is the sign of the mantissa (O for positive, I for
negarfvel , and the rest of the bils Are the VAlue of the exponent In excess 64
no tatfon, Internally, the exponent represent.s powers of 100 (not powers of 10).
For ex a." pie, 0.02 equals '.10-2, which equals 2·100-1 , !!O the Internal rcpresen-
tatton Is

3F 02 00 00 00 00

$3F Is the exponent {-Il plus 6·1 ($40), and the mantissa Is 2. Tht! Implied declmnl
point Is alway'S to the right of the tirst byte of the mantissa. An exponent less

BAilie XE Reference "'anual Page 23

Expressions Arithmetic Expressions
String Expressions

than $40 Indtc ates a numher h"tw"en 0 and I, while an exponent greater than or
equal to $40 represents a number greater than or equal to 1. 7ero Is represented
by Il zero mantissa and A zero e-xponent.

In gen"ral, numbora have a 9 digit pr ec lsion, For f'xaml'Ie, only the first 9 digIts
are guaranteed to be sIgnificant when IN PUTting a number; You can 8Oml'Umes
gl't 10 slgnl(lcant dlg lts In the special cane where an even number of digits are to
the rIght of the dl'cimal point.

Arithmetic ExpressIons (aexp)

Arithmetic expresstons are those which evaluate to 0 number, and are made up of
one or more of the fo\lowlng \lst of operands, separated by operators.

II a numcrlc constant (number)
21 an avor (or subscripted mvarl

0 function which returns a numher
4) string comparlslon using relatlonsl lops

The first three nr-e straightforward, hut the fourth r equtres explanatton, You may
utile strlnji(comparlsions tn arithmetic expressions because the comparlslon results
In a I (true) or 0 (false). For example, "ABC"<"ACC" would r"turn a 1, stnce
"ABC" "ACC" when the two are alphahetlzed. Conversely,
"ABC">"ACC" evnluates to O. An arlt.hmetlc ox peesstnn can simply be one of the
above descrfbod operands, or two or more of them se para t ed hy operators (either
arithmetic or logicaJl. The following examples of arithmetic expressions Include
thc evsluatlon order of the operators (It any) and the result.

Exprl'ssion
(4 + (2 I 17)·2)

"AR"> ".",C"+7*("Aft»
:

Evaluation Ordl'r/t',.,'
>,ASC,* ,+

NIA
• ,I, INT

Rl'sult
30
455

String Exprellllions (sexp)

String expressions Are much simpler than arithmetic f'xpu'sslons since there are
fewer things they can be. The following list shows all the valid string expresstonss

I) 0 string constant (lIteral string)
2) sn svar (or subscrlpt ..d savnr)
31 a functIon which returns a strlnlt
4) 8 s ub s t r Ing or an sv ar or savar

Notice that nothing has hl'en said about operators In string expressions. That Is
bec-ause none are atlowcd (with the special exception of the comma (,) fnr concate-
notion In string asslgnmr-nt}, A string expression may be one of the above, as
in the following examples: ----

"A literal string"
AS 88$(1 ;3)
8a$(I;)

Sa$(lj4,R)

Page 24 BASIC XI! Reference Manual

Editing Your Program

Editing Your Program

NEW
NUM

The statements In this chapter case the .tob of editing a BASIC lCE program, so
that proRrammlnR ne ..d not be constdered a chore. This chapter covers the state-
ments NEW, NUM, LIST, DEL, RENUM, Rnd REM.

HEW

Formst:
F.xanpl"s:

NEW
NDV
100 NEW

This command eraees the BASIC XE program currently In memory. Therefore,
before typing NEW, make sure you have saved your program (using SAVE, CSAVF.
OrI:i'ifT) If you want to keep It. HEW also clears RASIC XE's Internal symbol table
so that no variables are d .. flned. NEW Is normally used In Direct Mode but Is
sometimes useful In Deferred Mode RSan alternative to END, when you want a
program wiped out after It has RUN.

NUM

Format:
Examples:

NlM Istartl£,lnc]

NlM 50
NUll ,I
NUll 50,1

The NUM command enables RASIC XE's automatic line numbering ability. This
facility can Increase your program .mtry speed because It puts In the program line
numbers for you. If no start or inc Is gfven (first example), HUM will star t
numbering from the IRst line number currently In the program in Increments of 10.
If there 18 no current program, NUM will start with line number 10. If the starting
line number alone Is given (second example), NUM will start numbering from that
line number In Increments of 10. If the Increment IIIone Is given (third example),
NUM wll1 start numbering from the last line currently In the program, In
Increments of Inc. If both the starting line number and the Increment are given
(last example), HUM will start numbering from the given line number In Increments
of Inc. Note: neither start nor Inc may be O.

Four things cause the automatic line numbering to stop:
n If you press <RF.TUR N> Immedlat!"ly following the line number.
2) If RASIC lCE encounters a syntax error on a program line you type In.
3) If the line number the automatic numberer would use already exists.
4) If the automatic numberer would generate a number larger than 327R7.

Note: using NUM In Deferred Mod!" RlwRys returns you to D1rpct \'dode.

BASIC XE Reference Manual Page 25

LIST
DEL

Fo rma t r
l:xlITlpl es:

LIST (L.)

I.IST r J Inr-no t H ,111n"n0211
LIsT
UST 10
I.IST JO,IOO
LIST 10,

F.dltlnlt Your Program

Note: this section covers only the editing uses of LIST. For Its program slIvlng
usps, see the Storing and Retrieving Your Program chapter.

LIST causes the prograrn "urrl'ntly In memory to be displayed so that you can edtt
or stu(ly It. If LIST is used alone (without l lneno l or 2), th.. entire program Is
d lspl uyed (first ex ample}, If)",>U follow it with a .lnRI.. line numboe, only that line
will be displayed (...cond example). It you sp"effy two line numbers (s e parated by
comrnas), IIn ..s Itneno! t hrough Ilnen02 wlJl be LISTed (third example). If you !tlve
thf\ .!ltllrtfnf(line number, A comma, nnd no ending line number, the p.ndlng line
number is assumed to be the Inst 110.. In the prog ram (tast example},

Note: You can cont.rol the- autorn a tfc indention of structured statemente (FO",
WHILE, e tc.l "hf"n they are LISTed using SET J2,8exp. You cnn also control the
cnstrtcntton using SET 5,aexp. See SET tor more Into.

DEL

Fo rma t r
EXfmples:

nEL linenolr,llnRn02]
OEt. 100
OF.L I non, 1999

DEL deletes prozram lines currently in memory. It a single line number Is given,
only that lin e "ill be deJl'ted (first ex am ple] , If two 1I0e oumbers are given, lines
Ilneno! through 11n('n02 (inclusive) wlJl be del .. ted (second exnmplel,

Page 26 BASIC XI! Reterence Mnnual

Editing Your Program

RENUM

RENUII
RP.II

Format:
EXlll11pleSl

RENUM [startl! ,Incl
RENlM
RENUtl 100
RENUtI ,'0
RENUM 1000,S

RENUM renumbers the program In memory, using start as the starting line number,
and inc as the Increment between line numbers. If start Is not specified, lOis
used. If Inc Is not specified, an Increment of 10 Is assumed. Note: neither
start nor inc may be O.

All line number references (e.g., In GOTOs, GOSUR_, etc.) are also renumbered
It they are numeric constants. Line number expressions (e.g., GOTO 10·A)!!!!!.
not be renumbered.

Caution: If you are RUNning a program In FAST mode, a RP.NUllln that program
will do nothing.

Caution. If you lise LIST In Deferred r.<ode (I.e., In a program) the line number
values you want to list will not be renumbered by RENUM.

Caution. RENUM will not renumber an absolute line number after a line number
exoressed as an expression. It you RENUM the statement
11 On • 5.sub 111,J*V,211 .
the .100 wl1l be renumbered, but" the 200 will not since It follows a line number
expresslon (3·Y). This situation Is possible only In the ON statement.

Warning. If you have n reference to a line number that does not yet exist (eoR. a
GOTO 50 when line 50 doesn't exist), RENUM will not renumber that reference.
After the RENUMbering, however, the non-exlst.eiitI'lnei1umber might exist, thus
making the reference valid, but It will most likely not refer to the program line
you WAn t It to.

REM (R.)

Format:
Examples:

Rf]I'I text
Rf]I'I This Is a remark
10 REM Routine to calclliate X
20 OOSlm 300 : REM Find Totals

REM stands for " rpm ark" and Is used to put comments Into a program. This
command and the text following It on the same line are Ignored by the computer.
However, It Is InchKled In R LIST along with the other numbered lines. all
characters following a REM are treated as part of the REMark, no statements
following It (on the same progr am line) will be executed.

BASIC XE Reference Manual Page 27

Space For Your Notes

Page 2R

For Your Notf!s

EdlUng Your Program

BASIC XI Reference Manual

Storing and Retrl('vlng Your Program

Storing and Retrieving Your Program

LIST
ENTER

RASIC XE allows you to store your programs In either oC two Cormats - as ATASCII
text, or as the tokenlzed gibberish Internal to BASIC XE. LIST and
ENTER perform program I/O ustng the C1rst Cormat, while SAVE and LOAD, and
CSA VE and CLOA D use the second. The reason the tokenlzed format Is ofCered Is
that It Is generally more compact than the ATASC II Cormat and al ways cuts down
on disk/cassette use and I/O time.

LIST (L.)

Fonnet:
Examples:

I.IIT "filespec"! ,llnenolH ,[llnen02]]
LIST "C,"
LIST "D:DEMO.I.IS"
LIST "P,",20,IOO

LIST allows you to wrlle out the ATASCII text version oC the program In memory.
As evident from the examples, Cilespec may refer to any device. You may add any
oC the line number speclClcations (described In the previous chapter's discussion of
LIST) to LIST only a portion oC your program to filespec.

Note: the quotes around lllespec are required by LIST, unless ol course a string
variable Is used.

ENTER (E.)

Format:
Examples:

FNTER ·Cllespec"
ENTER ·C,"
ENTER "D2:DEMO.LIS"

The ENTER command allows you to read In a program you have 88Ved using the
LIST command, and will not work with programs which have been SAVEd or
CSA VEd. To use this command, you simply need to give the tIlespec oC the
program. Note: whereas both LOAD and CLOAD clear the program memory space
beCore readIng In the new program, ENTER does not, and so Is useCld when trying
to merge programs together.

Bonus' You can modify what RASIC XE does aCter completing an ENTER using the
SET 9,aexp command (see SET Cor more tnro),

BASIC XI Relerence Manual Page 29

SAVE, LOAD
eSAVE, CLOAD

Storing and Retrieving Your Program

SAVE (S.l

Format,
F.xanples,

SAVE "filpspec"
SAVE "D,TEST.BXF."
SAVF. "C,"

SAVE allows yo II to MVf.·the tokenlzed form of a RASlC XF. program to any device.
A file saved using this command may then be read back into program memory ualng
LO AD or loaeled and immedln tely executed using the RUN command.

LOAD (Lo.l

Format,
F.xanpl es e

LOAD" fi l e sper-"
WAD "01, r.M1F.1. BXE"
100 LOAD "C,"

LOA D allows you to load the SA VEd version of a program into m..mory from any
devtce, It will not work with programs saved using LIST or eSAVE.

CSA VE (CS.)

Fo rms t r
F.xmlples:

CSAVF.
CSAVE
100
100 CS.

CSA VE is used to save thf> tokenlzed verston of a program. The difference
bet ween eSAVE and SAVE "C,· is that eSAVE Ieav es shorter Inter-record gaps
and so makes c asse tte lID faster. On ent.ertng CSAVE two bells sound to Indicate
that the PLAYanel RF.CORDbullonsmust be presseel, followeel hy <RETURN>.
Do not, however, press these buttons unttt the tape has been positioned. Note,
t a pe s sav ed IIsing the two commands SA VE and CSA VE are not compatible. Note:
due to a flaw in the Atari OS ROMs (not RASIC XEl, it may be necessary on some
machines to enter an LPRINT before u_lng CSA VE, otherwise It may not work
pr operty, For speclflc Instruc ttons on how to connect and operate the hardware,
cue the tape, e tc ,; see the Atllrl 410 or 1010 Program Recorder Manual.

CI.OAD

t'ormat:
F.xampl es,

CLOAD
CLOAn
100 CLOAn

This commend can be used in pither Direct or Oeterred Mode to load a program
from casse t te tape, a nd Alay be used only IVlth programs which have been CSAVEel.
On entering CLOAD, one bell sounds to Indicate that the PLA Y but ton needs to be
pr-essed, followed by <R ETI' R N>. However, do not press PLA Y until the tape has
been po si t iorted , Specific instructions for CLOADing a program are contained In
the At ar i 410 or 1010 Program Recorder Manual.

Page 30 BASIC XII Reference Manual

Making Your Program Stop and Go

Maldng YOllr Program Stop and Go

RUN
END

The statements dfscussed In this chapt"r enab'"e and control the "xeeutlon of your
RASIC XE program. They are RUN, END, PAST, STOP, CONT, TRACE, and
TRACEOFF.

RUN

Format:
EXlIITIples:

RUN ("fllesp"e")
RUN
100 RUN "",MENU"

This command causes 0 ASIC)i' E to begin B program; If fileapec Is not
sp"clfled, the current RAM-rt'slelent program Is execut"d; otherwise 0 ASiC
retrieves the tokentzort program tor-n the sp"clff"d file anrl then executes It.
nefore execution begins, RUN sets all aVII!'s to zero, unDIMenslons all mvars,
svara, lind savara, CLOSEs 1111 open flies (chllnnel.), lind turns off all SOUNDs. If
an error ocrurs while ynur program is nUNnlng, expcutton wltl and an
message will be displayed (unless the error has been TRAPped).

Although RUN without a fllea(X'c Is most frequently used In IlIrect Mode, It can
also be used In Def"rreel mode, For example, RUN the following program (press
<DREA K> to exltl:

11 Print "Continuous RUllning"
21 Run
Note: RUN must be the last (or only) commantl on II program Jlne when used In
Deferred Mode.

If you want to begin program execution somewhere oth"r than at the first program
Jln", use GOTO In IlIrect Mode. Caution, variables Are netther cleared nor
Initialized by GOTO.

END

Format,
Examples:

ENJ)

ENfl
40011 t:Nll

END Is useel to '"rmlnllte the expcut!on of a program. III addition to this, It also
ctoses all files ("hannels), silences any sounds, and turns off PIM's (If they were
turned on via PMG.). It dO"8 not "hAnge the graphics mode, however. END Is not
requlrerl In moRt BASIC XE autom attcalty closes all mes and
sUences any sounds after the last prog ram line hRS executpd.

Note: If you have Rny subrouttnee Jotlowtng the main program you should put an
END at the end of th., main program, or th" subroutines may be executed as part
of the rn atn program.

EN D may also he used In Direct mode to close fll"s, silence sounds, and turn off
PIP.I's.

BABIC XIl Reference Manual Page 31

FAST

Fonnat:
Exlll1ples:

FAST
FAST
100 FART

FAST

Making Your Program Stop and Go

During normal program ex ecutlon BASIC XE must search from th.. beglnnlng of
your program for a sp<'clfied line number whenever It encounters a GOTO, GOSUB,
FOR, or WHILE (this Is how most other BASICs do It too). However, you can
change this by using the FAST command. When BASIC XE sees FAST,It does a
precompile of the prog r arn currently In memory. During the precompile BASIC XF.
changes every line number to the address of that line In memory. Then, whenever
a GOTO, GOSUB, FOR, or WHILE Is executed, no line number se arch Is needed,
since BASIC XE CRn stmply jump directly to the speciCied line's address.

Note: If the lineno used In the GOTO or GOSUB Is not a constant (I.e., Is a
variable or an expresslonl, that IIneno will not be affected by FAST, and 80 will
execute at normal speed.

Note: the following statements and situations wl1l terminate FAST mode
execution:

DF.L
ENTER
EXTEND
LIST
LOAD
LVAR
RUN • fnespec'
SAVE
returning to Direct Mode.

Caution: when you use FAST In Deferred Mode, It must precede your first GOSUB,
FOR, CALL, WHILE, and/or LOCAL. We recommend that you use It as the first
statement in your program.

Caution: If you are using ENTER to create program overlays, you wlll notice that
the notes and caution above seemingly combine to preclude the possibility of
ENTERed over-lays executing In FAST mode. There Is only one way to get around
this: the main program (the part that calis the overlays) cannot be In a loop,
subrout ine , or local region when It ENTERs the overlay. If you Insure thts, you
may then make FAST the C1rst statement In your overlay without creating
problems.

Page 32 BASIC XE Reference Manual

Your Program Stop and Go

STOP

STOP, CONT
TRACE/TRACEOPP

Format:
Examples:

STOP
100 STOP

When you use the STOP command In Deferred Mode In a program, BASIC XE
displays the message "Stopped at line IIneno", terminates program execution, and
returns to Direct Mode. STOP does not close mes or turn off sounds (as does
ENOl, so the program can be resuiii"edby typing CONT. This can be very useful In
error handling. For more Information on this, see the Handling Errors chapter.
When used In Direct Mode, STOP simply displays "Stopped", and returns to Direct
Mode.

CONT

Format:
Examples:

CONT
CONT
100 CONT

In Direct CONT resumes program execution which has been Interrupted by a
STOP statement, a <BRF.A K > key abort, or an error. Caution: exeoutton resumes
on the line following the halt, so any statements following the halt, but on the
same program line, will not be executed.

In Deferred Mode, CONT may be used for error handling. For these uses, see the
Handling Errors chapter.

TRACE / TRACEOFP

Forma t s : TRACE
T1I.ACF.OFF

F.xamples: 100 TRACF.
TRACEOFF

These statements are used to enable or disable the line number trace facility of
BASIC XF.. When In TRACE mode, the 1Ine number of a line about to be executed
Is displayed on the screen, surrounded by brackets ([ll.

Exceptions: The first line of s program cannot be TRACEd, nor can the tsrget
line of a GOTO, GOSUB, or CALL, or the looping line of a FOR or WHILE.

Note: a statement Issued In Direct Mode Is TRACEd as having line number 3276R.

TRACEOFF Is used to turn TRACElng off once It has been enabled.

BASIC XE Reference Manual Page

Space For Your Notes

Page H

Mrtklng Your Program Stop and Go

Space For Your Notes

BASIC XII: Reference Manual

Confl/(urlng the BASIC XE System

Configuring the B...SIC XE System

SET
SETs 1 - 7

The statements and functions In thIs chapter allow you to change how RASIC XE
will function, as well as find out the current confIguration. The statements
d lseusaed are SET. LOMEM, CLR. LV"'R and EXTEND, and the functions are
SYS and FRE.

SET

Fonnat: SET aexpt , aexp2

The SET statem..nt allows you to chang.. a varIety of RASIC XE system-level func-
tions. aexpl Is the function you wIsh to change. and aexp2 Is the value to alter
the function. The table followIng summarIzes these SET parameters (default
values are gIven In parentheses):

aexpt
o (0)

aexp2
o
1

128

Po4panlng
<RIlF.AK> key functions normally.
Note, ReturnIng to DIrect Mode does a SET 0,0.
<RRF.AK> causes a TRAPable error (#1) to occur.
<RPF.AK>s are Ignored by BASIC XE. Other subsystems
(E, for eXlmple). however. wIll stilI recognIze
<RREAK>s.

CIO) 1. •• 128 Tab stop settIng for the canna In PRINT statements.

2 (63) 0 ••• 255 Prompt character for INPUT (default Is "1").

3

4

5

7

(0)

(I)

(ll

(0)

(0)

o
1

o

o

1

o
1

o

FOR loops execute at least once (ala Atarl BASIC).
FOR loops may execute zero times (ANSI standard).

Instead of reprompting. a TRAPable error (#8)
occurs.
On a multiple variable INPUT, If the user enters too
few Items. he Is reprompted (e.g •• with "11")

BASIC XE scts lIke Atarl RASIC In that It Is
sensItive to character case on program entry (either
type-In or ENTER). Lowercase and/or Inverse
charactrr8 couse SyntRx errors, except when used In
REM , DAT.... or string constants.
RASIC XE converts text to a nice. readable format
upon entry. Keywords and variable nlmes Are
capitalized, while REM text. DATA Items. and string
constants rRnBln unchanged.

Print error messages along with error numbers.
Print only error numbers (ala Atarl BASIC).

thAt move vertically to the edge of the acreen
roll off the edge and are lost.
P/M's around from top to bottom and vlaa versa.

II...SIC XE Reference Manual Page 35

SETs8-lS
SYS

af'xp2
(ll -0-

ConrigurlnK the BASIC XE System

non't push (PMA) the nlmber of parameters to 8
USR ('A) I on the s t ack (AtI'IAnl8p;e: S<rnl' 8ssmlbly
l anguage subrout Ines not expect Inp; pArlmPlerS may be
('oll ..d by a simpll' USR).
110 push thl' count of pa r ene t e r s , ala AtRrI BASIC.

9 (0) 0
1

E/'II"ER returns to nJrp.,t Mode on ecmpletlon.
F.nd-Of-ENTER creates a TRAPobl" error (#32).

10 (0) (l

1
Thp four missiles act
The four missiles are
purposes. HOweVPf,
I ndependen t ,

I ndependen t 1y.
grouped togethe r for movonent
their widths and colors remain

11 (40) 1 ••• 255 BASIC XF will automatically DIM a string to this
s t ze If you do not DIM<'nsioll It yoursclf.

o RASIC XE like Atarl BASIC.

12

14

t5

\I)

(1)

(0)

(0)

o

o

n

o

The LIST program formatt e r dol'S not Lnden t ""en you
USl' s t r uotur ed statements (FOR, WHILF., e tc , },
LIST ind ..nts .m..n you use structured statements.

VAL produces an .. rror (#18) if you use a hex digit
string.
VAL will turn hex dlKlt strings Into numbers,
prevlded that the string b"glns with a "$".

PRI/'II" USING truncates numbers they contain more
digits than specified In the format.
This situation produces a TRAPabl e error (#23).

In FJITENIled I\Iode only, ADRC"strlng") will produce an

ADRC"strlng") will return the address of
string.

f SYS

Fo rma t :
EXffl1ple:

SYS(af'xp)
100 IF SYS(O)=O THEN SET 0,128

Tb e SYS funC'lion is used to find out the sta tus of a RASIC XF. syst.em function
altHable ustng SET. aexp Is the numher of the system fllnct;'1n as derlned In the
previous section.

Page 3fi BASIC XI: Reterence Manual

Configuring the BASIC XE System

LOIllEM

LOMEM, CLR
FRE, LVAR

Fo"",at:
Exanple.

1.0\lFll' addr
LOMEM DPEEK(128)<1024

LOMEM Is uSNI to reserve space below t.he normal prog rarn space. You could then
use this space ror screen display Information or assembly language routines. The
use rulnoss of this May b" limited, though, since there are other more usable
reserved areas available. Caution: LOMEM wipes out an)' user program currently
In memnry.

CLR

Fo""" t :
F.xanple,

CLR
200 CUI

The CLR statement ctears the values In the VartAbl.. Value Table and
unDIMenstons all syars, sav ara, And mvars, It does not cl"ar the Variable Name
Table lonly NEW does), so all the names remain. If you-wish to use an svar, savar,
or mvar aCter using CLR, you must reDIMension It first.

f Fnll

Fonnat,
Examples,

FRE(aexpl
PRINT FRE(O)
100 IF FRE(O)<IOOO TIIEN PRINT "Memory CritiCAl"

The FRE function re turns the number of of RAMbytes left for)"Ctllr use. Normally
FRE(O) returns the total amount of memory left, but If you have used the
EXTEND statement, FRE(O) re turne the amount of data space left, and
FRE(l) returns the amount of program space left In the extended memory area.

Fonnat,
Example,

LVAR I"fllespec"]
LVAR "P,"

I.VA R will list all var lablea cnrrently In US" to filespec. Each vArtable 15 followed
by " list of the lines on whkh thai varlable!s wed. The example ahove will list
the variables to the printer. If filespec is not specified, LVAR lists to the screen.

Note. svars and aavars are denoted uya trailing ",", And mvars by a trailing "en.
Warning, LVAR must be the last (or only) stat"",.,nt on a program Itne,

BASIC IE Reterence Manual Page 37

EXTEND
For 130X E Owners Only!

EXTENI)

Configuring the BASIC XE System

Fonnat: EXTENll

Until you use the EXTEND command with a 130XE, nASIC XE operates very much
like AIarl nASIC. From the viewpoint of most progrnrns, RASIC XF. In "normal'
mode Is Atarl BASIC. Foster, and with many additional capabilities, but
vpry memory compa tible,

EXTEND tells RASIC XE to switch from Atarl BASIC 'normal' mode to 'extended'
mode. In extended mode, RASIC XE programs reside In the 'extra' 64K bytes of a
DO XE, labeled 'extended memory' In the second diagram of Appendix B.
Programs can use up all 64K bytcs of the ex tend ed memory without Intruding upon
the data space (ror strings, arrays, e tc.) In main memory (again, see Appendix B).

You mAy use the EXTEND command In nirect Mode at any t ime-r-ef t her' when you
have no prog rarn In memory or oftpr a program Is In place. EXTEND will transfer
any prog rarn in main memory to the extended memory. Once in extended mode, the
only ways to return to 'normal' mode are to the NEW command or to LOAD 8
program which was SA VEd in normal mode.

On the other hand, you will automatk8lly enter extended mode If you LOA D a
program that was SAVEd from extended mode. Once you have EXTENDed a
program, you can restorf' It to normal mode only by LISTIng and re-ENTERlng It.

Note: EXTEND can only be used In Direct Mode, never In a program.

Note: You must be using on Atarl 130XE computer (or equivalent) for this
command to work. If RASIC XF. cannot find the extended memory bonks, you will
see an Fr ro r 60, "Fxtended Memory Not Avalt abte",

Note: BASIC XE follows r ecentty estahllshcd Atori Corporation guidelines when It
USf'S the extendrd memory. In particular, If the extended memory Is alrendy In use
(e.g., by Atarl DOS 2.5's P nm Dtsk}, RASIC XE will not Iet you EXTEND your
pr og ram and wlll give you on Error 60, as above, Early verstons of DOS 2.5, as
well 8S other programs, mAy not yet rollow these new guidelfnes, so be sure the
extended memor-y is available bpfore using the EXTEND command.

Teehnle81 Note: RASIC XE fills the extended memory with your program from the
'bottom' up. Referring to the second diagram In Appendix B, this means that
approximately the firM 16K bytes of your pr og rarn will go in Bank O. The next 16K
bytes go In Bank 1, et". These numbers are not ex so t , bf'eau." (I) "-'SIC XE
al we ys m atntatns a minimum of $100 bytes of free space In each bank, and (2)

XE never break.' program lines between banks.

If you sub trnc t about MOO from the value r-eturned by FRE(Il, you will have
a lower bound on the amount of space left in extenderl memor-y, Then you could,
for ex arn pl e , use hank to store mtsc el l aneous dnta, provided that
FR E(I)-$400 shows At II'a8t IFK bytes lert. See appendix [I for detaUs, or see your
Atari 130XE owner's rnnnunl for Infonnetlon on how the hardware side of the bonk
s("leoction works.

Page 38 BASIC XE Reference Manual

Exiting BASIC XE

Exiting BASIC XE

DOS
BYE

The following two commands, DOS and BYE, are used to leave BASIC XE to use
some other utility.

DOS (CP)

Fonnet. DOS

DOS Is used to go from BASIC XE to the Disk Operating System (DOS). It you have
not booted a DOS Into memory, the computer will go Into Self-Test Mode and you
must press <SYSTEM RESET> to return to BASIC XE. It you have batted with a
DOS, control passes to DOS. To return to BASIC XE, type "CA R" It you are using
DOS XL, or press "B" It you're using Atarl DOS.

DOS Is uSlJally used In Direct Mode, but It may be used In a program as well. For
more details on this, see your DOS manual.

Note. CP (command processor) Is exactly equivalent to DOS.

Format: BYE

The function of BYE Is to exit BASIC XE and go directly Into your computer's
Self-Test Mode. To return to BASIC XE, press <SYSTEM RESET>.

BASIC XE Reference Manual Page 39

Space For Your Notes

Page 40

Space For Your Notes

Exiting BASIC XE

BASIC XI Reference Manual

Data Input/Output

Introducing Atarl I/O

Introducing Atarl I/O

The Atar! Personal Computers conslder everythlnlt except the guts of th..
computer (t,e, the RAM, ROM, and processing chlpsl to be external devlces- for
example, the Keyboard and Screen Editor. Some of the other devices are Disk
Drive, Program Recordcr (cassettel, and Printer. The following Is a list of the
devices, ordered according to the devfce specifier. For some devices the
specifier alone Is needed as "fHespec", while others require both the specifier and
a file names

C. The Recorder - handles both Input and Output. You can use the
recorder as either an Input or output device, but never as both simulta-
neously.

D1: - DB, Disk Drlve(sl- handle both Input and Output. Unlike C" disk drives can
be used for Input and output simultaneously. Ftoppy disks are organized
Intoa group of flies, so you are required to give a file nome along with the
device specifier (see your DOS manual for more Informatton), Note. If you
use D: without a drive number, VI: Is assumed.

£. Screen Editor - handles both Input and Output. The screen editor simulates a
text editor/word processor using the keyboard as Input and the display (TV
or Monltorl as output. This Is the editor you use when typing In a RASIC XE
program. When you specify no channel while doing I/O, E: Is used because
the I/O channel number defaults to 0, which Is the channel BASIC XE opens
for F••

Jr. Keyboard - handles Input only. This allows you access to the keyboard without
using F••

P, Parallel Port on the B50 - handles Output only, Usually P, Is used for a
parallel printer, so It has come to mean "Printer" as well as "Parallel Port".

Rl: - R4. The RS-232 Serial Ports on the 850 - handle both Input and
Output. These devices enable the Atarl system to Interface to RS-232
compatible serial devices like terminals, plotters, and modems. Note: If you
use 8. without a device number, R1: Is assumed.

S, The Screen Display (TV or Monltorl- handles both Input and Output. This
device allows you to do either character or graphics I/O on the screen
display. The cursor Is used to address n screen poslt.ion.

Each of thpse devices Is usod f"r I/O of some type, although only a few of them
can do both Input and output (you wouldn't want to Input data from a Prlnterl.
Because they work differently, "a"h device has to tell the computer how It
operates. This done through the US" of a device handler. A device handler for a
given device gives Information on how the computer should Input and output datil
for that device.

One of the sub-systems in the computer- Is the Central Input/Output (CIOI proces-
sor. It Is CIO's Job to find out If the device you specify exists, and then look up
I/O Information In that device's handler. This makes It easy for you, since you
don't need to know anything about given handler. To let CIO know that a device
exists It.e ., Is available for 1/01 you need to OPEN the device on one of the ClO's

BASIC XI! Reference Manual Page 41

Reglnnlng Data Input/Output OPEN

eight channel. (numbered 0-71. Whe n you want to do I/O Involving the OPENed
device, you -nust then use the channel numbe r Instead of the device name.

Wh',n you see "flll.'spec" In the following sections, It refr-rs simply to the device
(and fIl" name In the cas.. of TI:l In a characte r string. The string may be either a
string constant, an svar , or an snvar element.

If you use channe1 #7, it wl1l prevent LPRINT or some of the other BASIC XE I/O
statements from being per formed,

OPEN

Format:
FxllTlples:

OPF.N #chan, aexpl, aexpg , "filespec"
100 OPEN #2,R,O,Af
OPEN

As mentioned above, a device must be OPENed on a specific channel before It can
be accessed. This "opentng" process links a specific channel to the appropriate
d evtce handl ..r, In itfal izes any CIO-relat..d control variables, and passes any
devicc-specltlc options to the device handler. The parameters tor the OPEN
command are d e fined as followSI

chan

aexpl

aexp2

This Is the number of the channel which you want to associate with the
d ev ioe filespec. Also, this Is the number you use when you later want to
do I/O involving the specified device (using IN PUT, PRINT, etc.),

Thh Is th.. I/O mode you want to associate with the above channel. The
numeric cortes are d"scribed In the followlog table:

aexpl Meaning
--.\- Iilput Only
6 Read Disk Directory Only
A Output Only
9 Append
12 l nput and OUtput

Note: other modes may exIst for special devices or extensions to a
device.

Device-dep<>ndent auxiliary code. See your device manual to see if It
uses this number. H not, use 8 zero.

filespec The device (and fiJ" name, If required) you want to be assoctated with
the specified channet .

Page 42 BASIC XI! Reference Manual

Beginning Data Input/Output CLOSE
PRINT

t"ormat:
fXlII11ples:

CJ.OSE Jlchan
CLOSE #4
100 CLOSE #1

CLOSE Is used to close a CIO e harmnl which has been previously OPEN..d to allow
1'0 on some device, Arter you CLOSE n channel, you e an then reOPEN It to some
other device, and thus assoe la te that channel number with a different device.

Note: you should CLOSE all charm..ls you have OPENed when you are finished
using them.

PRINT (PR. or H

PR,INT
PRINT X,Y,Z;A$
100 PRINT "The value of X I. "IX
.l00 PRfh'T "Cormas" ,"couse" ,"tAbs"
100 PRINT #:1,1\$
100 PRINT #4;"t";HEX$(Xl;" fs ";X

Fonnllt:

EXlJ1lples:

PRINT !#chanl [I :/CXP...][1;\ 1

PRINT Is used In either Direct or Deferred Mod" to output data. In Direct Mode,
It print. whatever exp tntormatton Is given. In the second example, the scre..n will
display the current values of X, Y,Z, and A$. Ir. the fifth ex ampi .. , A$ In PRINTed
out to the devlcc assocfa ted with channel 3.

The comma option causes tabbing to the next tab locntlon. Several commas In a
row cause eeveral tab jumps, To set the tab spacing caused by the lise of a comma,
lise SET l,aexp (see SET tor more tnro),

A s..micolon causes the nex t exp to be oulput Immediately after the prec,'<Ilnlf
exp without spacing or tabbing. Th.. reforp., In the sixth example spsces surround
the 'Il!' so that It and the values of X will not butt up against each oth..r ,

If no comma or semleolon Is used Ilt the "nd of a PRINT stetemeut , then 8
<RET URN> is output and th" nex t PRINT will start on the following 1I1Ie.

Note: numbers smaller than O.Ot or with more than 10 significant will be
PRINTed In scientific notation.

BASIC XI! Reference Manual Page 43

INPUT Beginning Do to Input/Output

IN PUT n.)
vorl [,var2 ••• J

SU(4; 1
X,Y,Z(41,R$

"SS',Name»

Fonnat:

EXlIllples:

INrlfr I [#chnn, 1 I
["string"]

INPUT X
] 00]NPl'T
100 INPur
] 00 INPur
100 INPur ",Ssnum(X),Nmnes$(X;l

INPUT Is used to Input various data and store It directly Into variables. The first
data element INPUTted will be stored In vorl, the second in var2, nnd so on. If
you are INPUTting more than one arithmetic varlnble, the numeric data elements
mny be entered on n single IInc Ii: they are scparated by commns, or on sepnrate
ltnos, each followed by a <R F.TUR N>. In the latter case , BASIC XE will prompt
with n double questloo mark to Indicate that more Input Is needed. When
INPUTting a group of strings, each must be tYPPd on a line by Itself, or as the lost
Item on the line when combined with numeric Input.

Note: you can make RASlC XE produce a TRAPable error Instead of the double
prompt by using SET 4,aexp. Also, you cnn chnnge the default question mark (?)
prompt to any chnracter using SET 2,aexp (see SET for more Info).

The fifth example above shows off onc of the most powerful additions to INPUT.
IC a literal string Immediately Collows the INPUT, that string will be used as the
prompt, thus allowing you to create prompts that are more explanatory thnn the
standard "?".

We strongly recommend tho t:
Il no more than one variable be used on each INPUT line.
2) INPUT and PRINT should not be used for disk data file access

(RGET and RPUT are suggested Instead).

Bonus: AS you can see from the third end Courth examples above, you can
INPUT directly In mvar elements and/or substrings. This addition (not In Atarl
BASIC) can be extremely useful and make your progrnms very efficIent.

Page 44 BASIC XE Reference Manual

Reglnnlng Data Input/Output

PUT (PU.)

Format:
Exlmplea:

Pl!l' #rhan,a..xp
Pl!l' #6, A" l
100 PlTl' #0,4*D

PUT la used to output a alngle byte of data to an open channcl. The data output la
aexp, and It Is output to channel chan.

GET

Format:
Example:

GF.T #channpl, aver
100 GET #0, X

GET la used to Input one byte of data from an open channe I, Thla byte of
Information Is stored In avar.

Format:

Example:

LPRINT (LP.)

l.pRl"..r [expHI:/exp ••• HI:/J
LPRINT "Calculation of X aquared:"

LPRINT causes RASIC XE to output data on the printer rather than on the acreen.
It can be used In either [IIrect or Deferred Mode, and requtres neither device
apeclfler nor OPEN or CLOSE statement,

Caution: LPRINT cannot be used auccesafully with most prlntera when a trailing
comma or semicolon Is used. If advanced printing capabilities are required, we
recommend using PRINT' on a channel previously OPENed to the printer (p:l.

Note: the semicolon ..nd comma options are dtscuesed In the PRINT section of this
chapter.

Note: although LPRINT may be used with USING Just Uke PRINT, we recommend
usIng PRINT 'x; USING Instead.

BASIC XE Reterenee Manual Page 45

TAB
t TAB

forms t:
F.xAmples s

TAR r_chan,) s""p
TAR #2,20
100 T,\B 12

TAR

Reglnnlng Data Input/Output

TAB outputs space. to the devlo .. specified by chan lor the screen It chan Is not
spe<'ltied) up to column aexp, The th'st column Is numbered O.

Nott': the column count I. kppt for each device and Is reset to ...ero each time a
carrIag.. r eturn ts output to that device. The count I. kept In Aux6 of the IOCR
ISe e OS dccumenta tfonl,

Note: Ir aexp I. Ie ss than the current column count , a <RETUR iii> Is output and
then spaces are put out up to column aexp,

r TAB

forma t: TAT;(aoxp)
EXlmple: PRINT

The TAB fun"Uon'. f'rf"ell.ldentlcal to that of the TAR ,t"tem,,,,t (see above).
Th" differ,,"ce Is t ha t Imloedding a TAB function In a PRINT USING or PRINT can
simplify your pr og r-arnm lng task greatly. TI,e TA D function will output .uftiel"nt
spaces so that th.. nex t It·em will print In the column spectrled (only If the
TAB(aexp) Is followed hy a eom lcof cn, though).

Note: tt aexp Is less than the current column count, 8 e ar-rtage return Is output and
then sps ces Are output up to column aexp,

Caution: th" TA R function will output spaces on some device whenever It Is used;
t herefo re , It should be USE'1 In PRINT or PRllliT USING statements.

P"ge 46 BASIC XB Reterence Manual

Advanced Data Input/Output

Advanced Data Input/Output

PRINT USING
Numeric Fonnats • c't: •

The statements In this chapter deal with special applications or advanced concepts
of data I/O. Unle&q you are already famUlar with these or similar statem ..nts (I,e,
If you've used SIC XL), we suggest that you play with them a little Just to get a
feel for what they can and can't do.

PRINT USING

Fonnat, PRINT [#Chan\:/l USING sexp, expl [,exp2 ••• l

PRINT USING allows you to specify a format for the deta you wish to output.
sexp Is the string which defines thp. formet you wish to use, and Is made up of one
or more format fields. f:ach format field tells how one of the ex"" which follow
sexp Is to be printed. The first field specifies the first exp'. format, the second
field specifies the second exp's, and so on. The valid format field characters are
• c't: • + • ,. '" ! and / (each will be explatned ...parately In Just a moment), Non-
format characters terminate a fonnat field and are printed as they appear.

Not.. , the comma (,I and semtcolon (;) spacing options of PRINT are overridden In
the expression list of PRINT USING, but apply after chan If It Is used 0 ','
produces a tab, and ';' produces no spacing).

Warning, sexp must contain at least one valid format field, otherwise BASIC XE
will print sexp repeatedly as It searches for a format field.

Numeric Formats, the characters for formatting numbers are,

• Blank Fill
c't: Zero Fill
• Asterisk Fill
Ileclmal Point

, Insert a Oamma
+ Sign (+/-) pre/postfix
- Sign (- only) pre/postfix
• Dollar Sign prefix

a: and ., If there arc fewer digits In the output number than specified In the
format, then the digits are right Justified In the field and prefixed with the proper
fill character. If there are more digits In the output number than specified In the
format, then the rightmost dlglt(s) of the number which fit In the field format are
dl.playp.d (see last example). The follOWing table Ulustratp.s these capabilities and
limits (bars have been placed around the output so that you may visualize the field
boundaries),

Vslue Formnt Qutput
12:1 #1ii# 123
123 MM: 0123
123 •••• ·123
1234 ##U 1234
12345 U#I 2345

Note: If you don't want numbers truncated, you can use SET 14,1. BASIC XE will
then force a TRAPable error (#23) rather than truncate the number.

BASIC XB Reference Manual Page 47

PRINT USING
Numeric Formats • , +

Advsnced Data Input/Output

• (p"rlodl: a period In thc fonnat Cleld Indleates that a decimal point Is to be
printed at that locntlon In the number. All digit positions In the fonnat that
follow the d"clmal poInt are filled with dlp;lts. If the output number contains
f",."r fractional dll!"lls than speclCled In the fonnat, then zeroes are prInted In the
ex tr a positions. If the output number contains mor" fractional dIgits than
Indicated In the fonnnt, then the output numher Is rounded so that there are the
spedCl"d numbe-r of Crsctlonal d lg l ts; Note: a second decfm al point withIn a single
fonnat Is trea ted as a non-format character, and so termlnotea the fonnat field.
Here are some ex amplese

Volu..
12.488

2.

Fonnat
u#.#i
###.##.....

Outpu.!.

II 12.
491
.

, Ir-ornma]: a comma in the fonnat CI"ld Indicates that a comma Is to be printed at
that location In the output number. If the formst specifieR that n comma should be
printed at a position that Is preceded only by fill characters (#,11: ,"), then the
approprIate fill character wllI be printed Inste ad ot the comma. Note: the comma
Is a valid fonnat charocter only to the left ot the deelmal poInt (It a decimal poInt
Is IIsed); when a comma appears to the right of a decimal point, It becomes a
non-tonnat character and terminates the tormal field. IIere are some examples.

Valu"
52i6

3
4175

Fo rma t
##, ###
•••••,
#,U#.

Outpllt.

I
5, 21 6 1·····3

14 , 175 . 1

+ and -: a plus sIgn In a fonnat Cleld indIcates that tho sIgn of the output number Is
t<> be printed (+ It positive, - It negative). A minus stgn lndf e ate s that a minus sIgn
(-) I.• to be prInted it the output number Is negative and a blonk It the output
number is positive.

The signs moy be t1x"d or noatlnl: pre rlxes, or fixed postrtxes. When used as tlxed
pr e rtxes, the sign fonnot charscter be thc tlrst chorllcter In a tormat tleld:

Value

7
23.58
-23.58

Fonnnt
+### .##
+11##. ##
-&11:11: .11:&:
-MII:.<\&

I
- 43.70
023.58
-023.58

Floating signs must start In the first format position and occupy all posItions up to
the deelmal point. This causes the sign to be printed Immediately before the Clrst
digit rather than in a tixed locntlon, F.ach sIgn after the first also r e presents a
blank-till digit position:

Page 48

Value
3.75
3.75
-3.75

Fonnat
H+. ##
---.##
---. ##

Output

I +3.7513. 75 1
I -3. 75 1

BASIC XE Reference Manual

Advanced Oata Input/Dulput PRINT USING
NumerIc Format.t String Formats" I

A trailing sign may appear only after a declmnl point lind 8S the last charact.. r In
the formnt. field. It terminate. t he formet and prlnt.s the appropriate sign (or
blank).

VAlue
4:1:17
43.17
-43.17

Fo""" t
"0:00+
M.l.&&-

Output

I
T43.17+1
043.17 I
, 43.17-

$ (dollar sIgn). a dollar sign In a format field Indlcetes that a $ Is to be used as a
fixed or floating pr .. f1x to the output number; A fixed dolInr sign mll!lt be either
the first 0" second character In the tormat field (second only if the tlrst Is a + or -
used as a fixed sign pretlx):

Value
3i:?
34.2
34.2
-34.2

FonlV.t
$##. #11
+U#.U
-$lt#.U
+U#Llt#

Outp"t

1
$34 . 20 1
+$34.20\I $34.20
1-$ 34.20!

Floating dollar signs must star t as e it l,... the first or "(-eond (second for reason"
outlined above) cllareeter In the format field nnd continue to the decimal point.
Each dollar sign afte,' the first also represents 0 blank-Jl l! digit position.

Value
34-:2
34.2

Format

+$UH.#'
US,S".##+

Note: There may be only one floating character per fonnat tleld.

Warning. using +, - or $ In olher thnn proper positions wl1l give strange results.

Strine Formats: the tormat eharac ters ror strings ere {IS follows:

'lll Indicates th" strIng is to be right justified.
! Ind Ica t e s the string Is to be left justified.

If the-re are more cbarac ters In the strlr,g thnn In the tormat field, then the strl'lg
Is truncated, Following are examples or string formatting:

8tring
"BASIC xr."
"liAS IC XE"
"IlASIC XF."
"BASIC KE"

BASIC IB Reference Manual

Format

u u n n :
'li/1IIIIIlff!6
!!!!!

9u t p'!.!.
, IIASIC xr.1
\
BAS IC XE
BASICI

Page 49

PRINT USING - Ernbedd ing Format /
NORMAL/INVERSE

Advanced Data Input/Output

Embedding Chancters: the slash character (f) docs not terminate the format field
but will cause the next character to be printed as Is, thus allowing you to Insert
non-format charnc ters In the middle of a format field, a. In the following

VR)UP

"OSS"

Format
(#IIIITfiiiIt /- IIU II
%/.%/.%/.

°rpu t
/
(4 0R 441:-=30991
O.S.S·I

Bonua: If there are more expressions In the llst than there are fo rm at rtelds, the
format t1elds will be reused. For exampl .. ,

PRINT USINO n###II" ,25,19, 7
will output

1 25 19 71

NORMAI./INVERSE

Format: NaRY-AL
INVERSF.

F.xampl .. s: NORMAL
100 NORJ\lAL
ISO INVERSE

NORMAL and INVERSE nllow you to change the video presentation of all PRINTs,
LPRINTs. and PRINT USING.. Anything you display nft.. r a NORMAL wHl be
output just as It appears In your program, while anything you display after USing
INVERSE wHl be converted to Inv .. r se video. In this c ase , "harncters that were
previously In Inv erse video wnl nppear In normal video.

Note: llASIC XE returns to NORMAl. display whenever you return to Direct lI'Iode
or re RUN a prog ram from within Itself.

Page 50 BASIC XE Reference Manual

Advanced Data Input/Output

Fonnatl BruT 'chan, aexpl, aexp2 [,bank)

BPUT
BOET

BPUT outputs a block of data to the device OPENed on channel chan. The block
of data starts at address aexpl, and Is aexp2 bytes long. You may also select an
optional bank number If you're In EXTENDed mode (see EXTEND for more Info).

Notel aexpl the address may be a memory address, or the address of a string
(found using ADR).

The following example writes out an entire mode R graphics screen directly from
screen memory:

1•• Graphics .,Addr=Dp••krS5.J
11. Print ·flllin. Scr••n ••• •
12. for Slol/t.=. To r••*16.J-l :R•• ·'11 I scr••n·
13. 'ok. Addr+SIol/t •• Rando.r256J
U' R..t nl/U
lS. print ·0011. fillin•• Ro" .PUTtlnl ... •
1.1 Clos••1I0p.n .1 ••••• ·DINllDE•• SCR·'••• ·r.adl/ to .PUT·
17. ,put al.Addr•••*161
111 Clos••1
1" Print ·flnlsh.d IIPUT1In.·
211 End

Notel nothing Is written to the file which Indicates the length of the data written.
We suggest that you write fIxed-length data to make the rereading process
simpler.

BOET

Fonna I. , BGET 'chan, aexpl, aexp2 r ,bank]
BGET gets aexp2 byt.es from the device OPENed on channel chan, and stores them
starting at address aexpl. As with BPUT, aexpl may be the address of a string; In
this case BGET does not change the length of the string - this Is your
responsibility. You moy also selcct an optional bank number If you're In
EXTENDed mode (see EXTEND for more Info).

The following example ...111read In an entire mode 8 graphics screen directly Into
screen memory:

1•• GraphiCS "Addr=Dp••krSS.J
11. Clos••1:0p.n .1 ••••• ·0INllOE •• 5CR.. :R•• "r.adl/ to .GET·
12. Print "Ro" .'fTtinl
131 '.Pt .1.Addr••l*lS.
U' Close .1
lSI Print "fllllsh.d .GET1III."
16. End

Note: no error checking Is done on the oddress or length so care must be taken
when using this ste tem ent , lest you wIpe out part of DOS or your BASIC XE
program.

BASIC XB Reference Manual Page 51

RPUT

RPUT

Fonnat: RPUr #chan, exp [,exp ••• 1

Advanced Oat.a Input/Output

RPUT allows you to output fixed-length records to the device OPENed on channol
chan. Each exp constitutes one fl"leI clement In the record. An arithmetic field
consists of one byte which indicates an arithmetic data type, nnd 6 ReD floating
point bytes of dats , A string field conslst s of one byt" which Indicates a string
data type, 7. byte. of I.E N h'ngth, 2 bytes of DIM length, and then DIM length bytes
or d a ta , All this really means Is t hn t you can't INPUT data which has been
RPUTted, stnce mor.. than just the data's RPUT.

The following example RPUTs 20 records of the fonn "Nam e", "Address". "City",
"St e te", Zip, Phone:

1•• 'iM
111 ZiPslZ81,PhoneslZ81
lZ. Clos, al:0pen al,I ••• nD:fRIrROS.'ATn
13. for ReenuM=l 10 Z.
1... Input IiIW» ",I....s5 fl.cnu_;J
15' Input nAddress» n,Addrs'lleenUMl)
16. Input nCity» n,Citips'IRpeoUMl)
118 Input n5tate» n,5tatps$llpenuMl)
18' Input nZip» n,lipslleenUM)

21. Print laMes$llpr.nuMl):Print Addrs$IReenUMl)
221 Print ; .. , "JZips(R.cnuld
Z3I Print USing nl_Il-..-_n,Phonesll8CnUM)
2... Print tInput 'WoM'CfihiM'H:.M ",Ans$
251 If (6n5$="YII, Or .. lido RPUTIt
Z68 Rput al,MaMfs$IRtenUM;),AddrsSIReenUM;),CitilsSIRPCnUMl)
27. Aput al,5t.tls$IIPenUM;),ZipSIAlenuMJ.PhoneSI.,enUM)
281 Else :Prin1 "A.-.nt.r r.cordlt:Goto J4.
U' fndlfIe. III.t 'PenUM
11. CJose al:print :Print "AJI 'one·U' fncl

Page 52 BASIC XE Reference Manual

BSAVE
BLOAD

Formnt :
F.x!ll1pl P'

BSAVE

8t'xpl,nexp2,"fllt'speC"
DSAVE

Advanced DatA Input/Output

BSAVE ..lIows you to stor.. a btnary Irn ag e In standard Atarl LOAn Cormat
(with h..aelpr) .0 thnt you can Iater BLOAD It ellrpclly Into the right place
aexpt Is the starting a'ldress of the regfon of memory you want to save, and
aexp2 Is the ending address of the region. A total of opxp2-np"pl +1 bytes of
binary elnta are stored,

Technical Note: BSA VE saves the memory Image as a stng le segment, with a slngl ..
No RUN or INIT vector Is appendPd.

BLOAD

Format:
Fx smp l e s

RLOAD "fll"spec"
RLOAn "D,PM;EFLlP.R1N"

BLOAD Is th" complementary stntemcnt to IISAVE because It allows you to loael A
.tRndard Atarl nos LOA 0 formnt binary file. It can also be used to load
USR rout Ines you hav o wr-Itt r-n using 1\1 AC!65 (01' some other InCerlor Assembler).

Warning, BLO A [l per forms no chocks of the addresses specif\"d In the segment
hpader(.). You can p.Mlly wlpp. out huge and Important parts oC memory wlth thIs
sta temen t! ---

Technical Note: BLOAD will load bInary m". that ar" made up oC any numb.. r of
segrnon ts, It will load but Ignore P. UNand/or INIT vectors.

Bonus: it your blnary ru!' hAS R "UN vector, you c an execute It via
SET 8,O:A=USR(DPEEK(UEO».

Page 54 BASIC XB Reference Manual

Advanced Da tn Input/Output

NOTE (NO.)

NOTE, POINT
STATUS

Format.
Exll11ple.

NOTF. #('hnn, avar t , avor2
10il NOTE U,X,Y

NOTE stores the current sector number in avarl and the current bytp. offset
within that sector In avar2. This Is the current read or write position In the
specified file where the nex I b) te to be read or written Is located.

POINT (p.l

Format.
Example.

POINT #chan, avorl, avar2
100 #2, A. B

POINT sets the current disk sector to av,u'l, and the current byte number within
that sector to oval'::!. Essentially, It moves a soHwore-conlrolled pointer to the
specified location in the tile. This give. the user "random" eocess to the data
stored on a disk file. The POINT and NOTE commands are dlscussed In more detaU
In your DOS Manual.

STATUS (ST.)

Format.
Exll'llple.

STATUS tehan, avar
350 STATUS #1,7.

STATUS calls the status routine for the devfce OPENed on channel chan, and
stores the value ..-turned In avar. This can be useful wllt'n c1eallng with devices
that produce special status values (e.g., R.I.

Warning. If no device Is t'urrcnl1y OPEN on chan, STA';US Will "till try 10 <10
something. What It will do <!"p!,,,ds on the lost thing tha t was clone on channel
chan, and csn produce d is..trous results. We strongly r"commend uslug XIO 13 on
channels which are not OPEN.

BASIC XB Reference Manual Page 55

XIO

Fonnat:
EXlIT1ple:

Advanced Da ta Input/Output

XIO mwlno, #chan, aexpt , aexp2, "til espec"
XIO 18,#6, 0, 0, "So"

XIO Is a g enernl Input/output statement that allows you to access the special
eapabHltt"s of the device filespec. cmdno Is all aexp, and speclttes the functton
you wish the device to perform. aexpl and acxp2 are put In the auxl and aux2
bytes of channel chan, and are dependent upon the functton. A list of useful
cmdnos follows:

andno
--3-

5
7
9
11
12
13
17
18
32
33
35
36
37
38
253
254

operat fon
Open
('",t Text
Get Char
Put Tex t
Put Char
Close
Status
Dr aw Line
Fill
RenllT1e File
De l o te File
Lock File
Unlock File
Ilisk Point
Disk Note
2.5 Fonnat
01 sk Fonnat

Use OPEN Inst"ad
Us e INPUT t n s t e ad
lise GET or BGET I ns t e ad
Use PRINT Instead
Use PUT or BPUT Instead
Use CLOSE Instead
XIO 13,#6,O,O,"R4:"
Usc Instead
XIO 18,#6,O,0,"S:"
Use RENAME Instead
Use ERASE Instead
US" PROTECT Instead
Use UNPROTECT Instead
Use POINT Instead
Use NOTE Instead
XIO 253,#1,$22,0,"02:"
XIO 254,#1,0,0,"02:"

Note: we strongly recommend that you use only cmdno's 13, 18, 253, and 254, since
RASle XE has ata tem on ts that perform all the others.

Page 56 BASIC XI': Reference Manual

Managing Disk FUes

MllIIaglng Dl8k PUes

DlR , PROTECT
UNPROTECT

The statements In this chapter allow you to perform DOS-type commands without
ever leaving BASIC XE. The statements are DIR, PROTECT, UNPROTECT,
RENAME, and ERASE.

Note: In the examples In this chapter, you wllJ sometimes see the wUdcard
characters * and! In the fUeapec. For Informatfon on the use of theae, aee your
DOS manual.

DlR

Fonnat:
Exanples,

DIR ["filespec"]
100 DIR
DIR FILE$
DIR "D2,TEST?B·"

The DIR command shows a list of the dlak fUea which match fUeapec, and la slmll.r
to the DOS XL DIR command. It no tUeapec Is given all mes on 01: are displayed.
The first example wlll display all fUes on 011 with the" COM" extension. The
second exomple showa a string varlnble being used as tIlespec. This Is legal, but
the string variable contain a valid tlJeapec, otherwise an error wl1l occur.
The third exomple wllJ display all tlJes on the disk In drive 2 whIch match
TEST? .B*.

Note: DIR must be used as the last (or only) command on a progam line.

PROTECT

Format:
Exlmples:

PROTECT "filespec"
PROTECT "0:· .COIf"
100 PROTECT "D2:FILE.RXE"

PROTECT allows you to protect your disk flies without going to DOS, and Is very
similar to the DOS XL PR 0 command.

Note: Atarl DOS uses the tr-rms 'LOCK' and 'UNLOCK' Instead of PROTECT and
UNPROTECT. They're just dltterent names for the same Idea.

UN PROTECT (UNP.)

Format,
Exanples:

UNPROTECT "t II espec"
100 UNPROTECT "O:DATA.OOl"
UNP. "02:· •• "

The UNPROTECT statement allows you to unprotect disk tUes which have been
protected using either the BASIC XE PROTECT atatement or the DOS XL PRO
command, and Is similar to the DOS XL command UN Protect.

BASIC XB Reterence Manual Page 57

RENAME
t:RASE

Fonnal:
Ex"""le:

RENAME----
RENAME "filpspec,filenane"
nF.NAME "fl2: Ol\1NAME. EXT,NF.II'NAMF. F.XT"

Monllglng Disk FIles

RENAME allows you to rpname disk mes from BASIC XE. Note: the
comma shown bet ween filespec and filename ..!:"....!.!9ulred.

Caution: the n e w filename cannot Include a device specifier (On:). Also, we
strongly suggest that you do not use wildcards when RENAMElng.

ERASP.

ERASE fi!psp<>c
ERASE "O:·.flAK"
ERASE "02:TEST?SAV"

ERASE will erose any unprotected files which malch Ihe gIven filespec. The first
exnmple above would er-ase all rUes on the dtsk in drive 1 wJth the extension
"flAK". The second example would prase all files matching TF.ST?SAV on the disk
in drive 2. This command is simllor 10 DOS XL's ERA.

Page 5R BASIC XE Reference Manual

Looping and Jumping Statements

Looping and .Jumping Statements

FOR/STEP/NEXT

The statements discussed In this chspter sllow you to have repetition and Iteration
In your BASIC XE programs without a lot at trouble. The looping statements are
FOR and "RILE, and the jumping statement Is GOTO. The POP statement Is also
Included because It directly affects the executton at the other three.

FOR / STEP / NEXT

Format: FOR avar=aexpl TO aexp2 [STEP aexp3)
[statEments)
NEXT avar

The FOR statement Is used to repeat a group at statements n specified number at
times. It does this by Initializing the loop variable (avar) to the value aexpl. Each
time the NEXT avar statement Is encountered, svar Is Incremented by aexp3 It the
STEP option Is used. It this option Is not uscd, avar Is Incremented by I. When
avar becomes greater than aexpZ, the loop stops executing, and the program
proceeds to the statement Immediately tollowlng the NEXT avar. You can control
whether or not a FOR loop will execute at least once (a la Atarl BASIC) using
SET 3,aexp.

FOR loops can be nested (one FOR loop within another). In this case, the
Innermost loop Is completed betore returning to the outer loop. The tollowlng
program Is an example at nesting (notice how LIST Indents loops to show the
statements within a loop):

11 for K=1 To J
21 Print·.... ";K
JI for Y=1 To S St"p 2
.1 prjnt" Y Loop, ";Y;
.1 ."xt Y
.1 Print
7e ."xt •
II En"

The outer loop will complete three passes (X =1 to 3). However, betore this tlrst
loop reaches Its NEXT X statem"nt, the program gives control to the Inner loop.
Note that the NEXT statement tor the Inner loop must the
NEXT statement tor the outer loop. In the example, the Inner loop s number at
passes Is determined by the STEP statement (STEP Z). Using this data, the
computer must com plete three pesses through the Inner loop betore the Inner loop
counter (T) becomes greater than 5. The tollowlng Is the output at this program
when It Is RUN:

I3IDlr:II 1
Y LOOp, 1 Y LOOp, J Y LOop, S_2
Y Loop, 1 Y LooP: J Y Loop, I

CIIIIII'II J
Y Loop: 1 Y LooP: J Y Loop: •

BASIC XI! Reterence Manual Page 59

WHILE/ENDWHILE

Pormat : WIIILE aexp
[statanentsl
ENm'lfl LE

Looping and Jumping Statements

WHILE I ENDWRILE

WRILE allows you a looping statement wh!<'h continues execution conditionally.
So long as aexp is non-zero (It can be either positive or negative), all sratements
between WRILE ..nd ENDWHILE will be executed. Before each pass through the
statements In the loop, aexp Is evaluated to determine whether loop execution
should continue or not. For example, WRILE 1 will execute forever, and
WHILE 0 wllI never execute. The following program Is an example of the
WHILE loop:

188 RMa.=5:CMa.=S,currow=8.Cureol=8,'ound=8ITarget=8
185 DiM ••
118 Nhile currow(RMa. And C Mot 'oundl
178 Cureol:8
138 Nhile Cureol(CMa. And C Mot ,oundl
1.8 If Then 'ound:l
lS8 Cureol=Cureoltl
J68 EndWhUe
178 CurroW:CurrDw+l
lS8 EndWhileJ,. If found:Print "found ";lar••1;'· .t ";
2.. print nMatrtxC";Currow-l;",";Curcol-1;")1I
211 fls. :print Targ.t;'· not found"
U8 End;'

Page 60 BASIC XI! Reference Manual

Looping and Jumping Statements

Fonnet: (J)TQ Iineno

GOTO (G.)

GOTO

u.
U.
12.
U.
U.u.
U.
211
21.
22.
2n
241
251
261
27.
211n.
JII
U.
J2In.

The GOTO command Is used to jump uncondttlonelty to another part of the program
by specifying D line number U:neno). Because there Is no way to return
from a GOTO. the st&temcnts which follow It will never be executed. unless of
course another GOTO jumps back to them. The following example program shows
several uses of aOTO:

Tr,lI.Un::ll.
Inpu1 "la..... 1I nu...r fro.. 1 to ,) ",Luc..,
If Luc..,(1 Then 11.
If Luc..,>, Then 'oto 11.
If Luc..,()In1CLuc",) Then '010 Tr,lIgliin
Print ,Prin1
5010 2••+Luc..,.1.
.... *** CHOOSE • NO.. ...
Luc",$::"fitch" 15ot. J"
Luc..,S::"Pippin"IG010 J"
Luc..,S="lIIIndrill",'ot. J"
Luc"'''=''ZU1,.iS1''15.to JI.
Luc..,S="Zlot,"I'oto 1••
Luc..,S="fresht't":'010 J"
Luc..,"::"CroSit'r",'oto J'"
Luc..'''=...roUgh....·:'.t. J"
Luc..,"=".bllt10ir":'oto J"

puzzle word is,"
In.erse :Print ,Print
'oto Truagain

Note: any aOTO statement that Jumps to a preceding Ifne may result In en endless
loop.

Note: using anything other than
renumbering using RENUM difficult.
Improved;

BASIC XE Reference Manual

a numr.de constant for IIneno will make
However. readability mey be markedly

Page 61

POP

Fo rma t r POP

POP

Looping nnd Jumping Statements

To underst and what POP does, we n"pd to take a little journpy InsIde BASiC XE to
find out more about how loops work. When BASIC lfE sees a FOR, WHILE, or
GOSUB, It MVp! Away Its current position In thp program. That way, when It
rpaches th" NEXT, ENDWHILE, or RETURN, It wl\l know where to go back to.
Also, LOCAL saves the prevtous value of on av ar when you make It private so that
It cnn later be r .. store-d, The pl ace where !l ASIC XE MV"S these things Is called
the program st ack , And Is really Just a list. Putting sorn e thlng on the stnck Is
called 'pushing', and taking something of[Is called 'popplng', hence the command
POP suggests that It tnkcs something of[the stack, This Is exactly what It rtoea,
lind Is vcry useful when you want

1l to Jump out of n loop be tore It hASexr-cuted Its specified number of times,
2) to get out oC a subroutine (GOSUB) which does not give control back to the

main program through the use of a RETURN, or
3) to restore the previous values of LOC AL av er's, thus endIng a

LOC AL region without an EXIT.

Warning: If you POP too many or too few Items of[the at ar-k It wtll cause an error
(J3, 16, or 28, d e penderrt upon what you leCt at the top of th" stack).

The following cx ample s lIIustrnte these uses of POP:

J' 'or 1=. To ,
21 PrInt I;
J' I
••
51 Print II ";1;
61 pop
71 Print II : ";1
" ••• t I
,. R.M lin.s 2••nd J' M., b. sw.pp.d

1" Print "At lin. 1.1"
11. 'OSUb 2••
12. Print tlAt lin. 12."
13.
1" •••••••••••••••••••••••••••••••••
2•• Print II At lin. Z••••
211 'O.Ub 3••
22. Print II At lin. 22."
231 'oto 21.
2" R.M ...
Je. Print I' lin. J.I·I
IJ' 'or I=J To 5
32. Print ,. At lin. 321"
II' If 1=1 And Th.n Pop :Pop : ••turn
H' .ut I
3S1 Print II At lin. 35."
15.
J7 •••turn

Page 62 BASIC XE Reference Manual

Conditional Statements

Conditional Statements

IF/THEN

The statements dIscussed In this chapter allow you to execute parts of your
program only If the conditions you specify have been met. The conditional
statements are IF/THEN, IF/ELSE/ENDlF, and ON.

IF / THEN

Format: IF aexp TIIEN /iineno I
statement[:statement ••• l

The IF/THEN conditional Is used when you want to execute a group of statements
only If certain conditions are met. These conditions may be either arithmetic or
logical. It the aexp following the IF Is true (non-zero), the program executes the
THEN pArt of the statement. It, however, aexp Is false (zero), the rest of the
statement Is Ignored and program control passes to the next numbered line. When
THEN Is followed hyaline number (ttnene), execution continues at that program
line If aexp Is true. Note: IIneno must be a constant (not an expression).

Several IF/THEN conditionals may be nested on the same line. In the example,
1•• If K=I Th.n R="lf Y=3 Th.n Gote ZI.
the statement R=9 will be executed It X=5, while the statement GOTO 100 will be
executed only It X=5 and Y=3.

The following program demonstrates the IF/THEN conditional:

1•• Graphics "Print "I' DElIO"
11. Input "Ent.r Valu. 1 •• 3»
lZ. If .=1 Th.n print "On."
13. If .=Z Then print "Two"
1 •• If 111=3 Th.n Print ..Thr
lSI If .(1 Or .)3 Th.n printpi...lMiI'.·
11. Goto U'
17. End

BASIC XB Reference Manual Page 63

IF/ELSE/ENDIF

Format r IF Bey?
Ls t at enen t s l
[ELSE
[statementsll
ENDIF

IF I ELSE I ENDIF

Condf tlonal Statements

RASle XF. makes nvallnble an exr-eptfonatly powerful conditional cnpabllity via
U" ,I ELSE / ENDIF. If the expression aexp Is true (non-zero) Ihen all the
st a ternen ts be t ween aexp and ELSE wlil be executed, while the statements
bptween ELSE And ENDIF wll1 be skipped, If aexp Is fnlse (zero), then the
st s tements hetw"er. aexp and ELSE wlll be skipped, and those b .. tween ELSE and
EN DIF wll1 b....xecuted , If El.SE fa not used , this conditional nets just like a
multi-line IF/THEN with IF and ENDIF as dellmlters.

Caution: the keyword TIIEN Is not part of the syntax of this conditional.

Tlw followlnl(progrnm Illustrates IF / ELSE / ENDIF:

111 If 1<2
118 Print "ThiS "J
121 If 2>3
1 38 Pr i nt u(o..,ut.r II J
148 If 3<4
15. Print .li5 IfJ
168 flS.
171 Pr- i n t ubroh.n! II
188 fndl'
1'1 f15.
281 print "prOgraM ",
218 If 4)\1
228 Print "is a",
238 If \1(11
2'" print "boo-bOO"
251 fndl'
2111 f15.
271 Print "works HI
2111 If 11>7
2" Print I'poorlv.'·
n8 flS.
Jl1 Print ",reat!"
328 fndl'
331 fndl'
UI fndl'
351 flS.
361 Print ".abloottyt t" p'
371 fndl'

Page 64 BASIC XE Reference Manual

Conditional Statements ON

ON

Fonnat I ON aexp \GOTO I Iinenolf ,llnen02 •••]
GOSUlI

Note. GOSUB and GOTO may not be abbreviated when used In conjunction with
ON.

ON
Control gops to
Statement arter
Ilnenol
I1nen02

The ON statement allows conditional Jumps and subroutine calls. The condition Is
determined by aexp. If It Is negative, an error results. It It Is non-negative,
aexp Is rounded to the nearest Integer, and program control Is channelled
according to the following table.

value
-0-

I
2

•
N IlnenoN
>N Statement after ON

"N" Is the last Une number In the list of Ilneno's following the GOTO or GOSUB.
When ON/GOBUB Is used, control returns to the statement following the
ON/GOSUB arter the subroutine RETURNs.

The following program demonstrates the ON statement, both with GOTO and
GOSUB.
111
11.
12.
U.
14.
11.
16.
17.
U.n.
ZII
ZlI
U.
U.
U.
Z5.
26.
Z7.
ZIIn.
311u.
311
nl
U.
311.
311n.n.

Graphics 2;prin1 .,'1&·A'MI, rILE AUIIIE."
Print ali
print alil'1 run baSiC Xlt lillt":Print ali
Print nl' diSk dirutorl/":Print ali
Print M;' quit ..
Input "Your Choiclt' ",PiCk
on ((PiCk)3' or (Pick:." 50 to 11.
If PiCk:3 Th.n 5raphics .:fnd
On Pick 50SUb Z",311
on PiCk 50to 151,1"
Trap ZI.
Input "fi lit .aM? ""S

fn'l'
If findCT•• ••••Mf··••):. Th.n ,S:T'." •••f'·
print "Running .. JTSJ·· 'I.un TS
Rltturn
Trap "Print "iDliiliilllWa"lfrr(1l
Rltturn
'raphics I:Print "All 'lilts With '.IXf' fxtltndltr,"
Trap 36.
Print IDir "D:*.IXf"
print :Print "prltss IIIli1lII 'or Mnu"
I' Pltltk($dllf,&1 Thltn 34.
Rltturn
Trap •
J f Err el) (>136 Th.n PI" i nt If IN.M.I.4_ ...JErr el)
Cont

BASIC IE Reference Manual Page 65

Space For Your Notes

Page 66

Space For Tour Notes

Conditional Statements

BASIC XE Reference Manual

Handling Errors

Handling Errors

TRAP
ERR

The statements nnd function in thts chapter allow you to detect and resolve
run-time errors without causing program execution to halt. Inc'luded are the
TR AP statement, the ERR function, and a discussion of the error handling
applications of CONT and STOP.

Format: TRAP Iineno
Example: 100 TRAP 2000

The TRAP staterro ..nt is used to ,lir"ct the program to a s!",cl!ip.d line number If an
error Is detec tef , Wlthol1t a TRAP the program "tops ex ecuttng when an error Is
encountered and d1spl8Y8 an -error men!f'lge on UtP- scree-n,

TR AP works for any error the.t may occur aft"r it (the Tn A P statement) has b"en
executed, but once an error has been deteoted snd tr-apped, It is to reset
the error trapping with Rnoth"r TRAP statement. This r ese t tlng TRAP should be
done at the beginning of the errol' handling routtne to insure that the TR AP Is
reset alter taach error.

To find out the error numher Rnd the Itne number on whiC'h the error occured, use
ER R, as described In the followIng se e t lon,

TRA P may be dtsobled by exe"uUng 8 TR AP statement with an IIneno voiue of 0 or
grea ter than 32767.

Examples of TRAP may be found in the program on the followl"!!: page.

f FoRK

Forma t: ERn(aexp)

This runctton allows you to nnd out er-ror number anc' line on whtch the error
oceurren whr-n y'lU nre writing o wn error trapping- rourtnes, Using an aexp or
o wilt return the number or the lAst run-time errnr, "nd an 8P.XP of 1 wtn

program JIne on wh lch the error oocured. The results of using ot.her
VII)UE>S of 8E"XP are undefined.

Examples of ER R may be fl.'U"d In the program (In the following page.

BASIC IE Reference Manual Page 67

A Program Example Using TRAP and ERR
Using STOP and CONT In Error Handling

A Prog!am Example Using TRAP and ERR

III DI,
UI Print "Angl, Sinl CoSlclnt"
121 for 1=1 To III St,p 11
131 Print Using"" ••DIIlIlIII ",I,SinU),
UI TrIP 211
15. Print Using ""'."''',I/SinCn
ntI
17. [n"
1•• R'M .. g,t to lin. 2•• if
1" R'M SinCI) is ,qUIl to z.rol
2•• Print .. un .. 'fin.....
211 50to !rrCl)+l.

UlIlng STOP A CONT In Error Handling

Ilandllng F.rrors

CO NT can be vcry use tul In errnr handling because you need not fool around with
line menbers to continue program executton. In the above example, execution
continues on the lin .. following th.. error through the use of ER R(t) and a GOTO.
1£ CONT Is used instead, line 210 becomes much simpler:
21. Cont

The use of STOP In .. rror hondllng Is limited but very useful. In fact, It Is not
error handling at all; It Is error creation. When you are developing a program, you
can put STOPs whe re the program should never see them. If you get a ·Stopped at
ltneno", then you know you're doing som .. thlng wrong.

Page 6R BASIC Xl Reterence Manual

Handling Strings

Randling StringS

ASC, CHRS
LEN

This chapter discusses the functions In BASIC XE that arc designed to make
manipulating string data quick and easy.

f ASC

Format.
Example:

ASC(sexp)
100 A=ASC(A$)

ASC returns thc ATASCII numeric value of the first character In sexp. If AS=
"ABC", then ASC(AS) returns 65, and ASC(AS(Z)) returns 66.

Note. Appendix A contains a table of ATASCn codes and characters.

Format:
F.xamples:

C1IR$ (aexp)
PRINr CI'R$(65)
100 A$=C1IR$(65)

CHRS returns the character (In string format) represented by the ATASCII
numeric code aexp. Only one char-ac ter Is returned. In the above examples, the
letter A Is returned. Using the ASC and CRR, functions, thc following program
prints the upper case and lower case letters of the alphabet:
11 for C=I To 2'
21 'rift1 Chr.C.scC.....'.C'.Chr.C••CC.....,.C,
JI .a" C

Note. there may be only one STRS or CRRS In a logical comparison because
BASIC XE uses a single buffer to create the temporary string which both of these
functions use (e.g., IF CRRS(A)=CHRS(B)... Is always true, whether A and Bare
equal or not.

f LEN

Format: LEN(sexp)

The LEN function returns the character length of sexp. This Information may then
be printed or used later In a program. The length of a string variable Is simply the
element number of the last character currently In the string. Strings have a length
of 0 until characters have been stored In them,

BASIC XB Reference Manual Page 69

FIND
ADR

Fonnat:
EXEmple:

f FIND

FIND(sexpl, .exp2,
PRINT FIND("ABCDXXXARC", "RC",N)

Handling Strings

FIND Is an eftlclent, speedy way of determining whether any given sUbstring Is In
any given master string. FIND will search sexpl, starting at position aexp+l, for
thr, substring sexpZ. If sexpZ Is found, the function returns the position where It
was found, relative to the t>eglnnlng oC sexpl. IC sexpZ Is not found, a 0 Is
returned.

In the example above, the following values would be PRINTed:
Z If N = 0 or 1
9 If N>=2 and N<9
o If 1'1>=9

The following example shows an easy wsy to have a vector dependent upon a menu
choice:
1. Input Dr lIist? ",II.
2. On 'indc"CfL",.$U.13.1J 'D'O 1••• 2•••
:II (;DtD 11

This example Illustrates how chanj(es to aexp can affect the results of FIND:
1. Input ... string, - " ••$
2. 'or 5t=. lo LllntllS)-2
3. '='indC8S".,t).1
4. If '=1 l"lIn Print ".lIlt"lIr '.1' nDr '8C' Mr. fDund"IEnd
S' If .St,.n="I" 1"lIn Print "'Dund '.1' PIIS. "'I'-115t=,t.l
6. If •• C',,,="C" l"lIn Print "'Dund '8C' pDS...';'-lI,t=,t+l
71 ... t 51

r IIDR
Format:
Exrmples:

ADR(scxp)
ADR(A$)
AOR((5;)l

ADR returns the memory address of the string sexp, Knowing the address enables
you to use It In USR routines, BGET, BPUT, etc.

Warning: If you are In EXTENDed mode, ADR("strlng") returns an Improper value
because the string constant Is copied out of the banked program memory Into a
temporary area. Bec·ause it'slth!n R single stat..ment,
J=Usr C.dr C"M.L. in str ing"U
works. but
l=.drC"M.L, in string"J:J=USrCT)
won't because It's two statements. If you use ADR("strlng") us In the first case

can SET 15,1 so tba t BASIC XE won't force an error.

Page 70 BASIC XE Reference Manual

Handling Strings LEFT$, MID$
KIGHT$

ronnat:
EXlll'llples:

LErT$(sexp, aexp)
10 A$=I.ErT$ ("ABCPE", :1)
20 PRINT LE.'T$("ABCP" ,5)

The LEFT$ tunctlon returns the leftmost aexp characters ot the string &expo It
aexp Is greater than the number of characters In &exp, no error occurs and the
entire string aexp Is returned.

In the tlrst exsmple, 04$ Is equated to "ABC", and In the second example, the
entire string"ARCO" ill printed.

ronnat.
Example.

MIO$(sexp,aexpl,aexp2)
A$=MIO$("ARCOErG" ,2,4)

MIO$ allows you to get a substring trom the middle of another string. The sub-
string retrieved starts at the aexpl t h character ot aexp, and Is aexp2 characters
long. It aexpl equals 0 an error occurs (since there Is no oth character In a
string); It aexpl Is greater than the LEN length ot sexp, no error occurs (and no
characters are returned). aexp2 may be any positive Integer, but If Its value
makes the substring go beynncl the LEN length ot sexp, then the SUbstring returned
ends at the end ot sexp.

In the above example, A$ ill equated to "RCOE".

Format «
Ex,,",ple:

RIGHT$(sexp,aexp)
A$=RIGHT$("12345C",4)

The RIGHT$ function returns the rightmost aexp charneters ot &expo It aexp Is
greater than the number ot characters In aexp, then the entire atrlng &exp la
returned.

In the above ex ample , A$ Is equated to "3456".

BASIC XII Keterence Manual Page 71

VAL, STU

Format:
EXlIl1ple:

VAL(sexp)
100 A=VAL(Af)

f VAL

Handling Strings
RU'

VAL returns the numerfc value represented by a string, providing that the string Is
indeed a string representation of a number (I.P.. Is a digit string). Using this
function, the computer can perform arithmetic operations on strings aa shown in
the following exampl" prog rernr
1•••: .. 1......
r•• ••,1
31 'riRt "lh. S"uilr. loot Of " is ".,

Note: VAL does not permit the use of an aexp that does not start with a digit (I.e.,
that cannot be interpreted as a number), It can, however, Interpret noatlng point
numbers (e.g., VA U"IE5") would return the number IOO,OOO}. Also, non-numeric
cherae ter-s following a valid digit string will be Ignored (e.g.,
VAI.C"IOOABC") returns 100).

Note: VAL wlll convert hex digit strings.!! they begin with a "$". (You can
disallow this via SET 13,0).

Format.
Example:

8TR(aexp)
A$=STR,(650)

5TR' returns the string form of aexp. The above example would return the actual
numbpr 650, but as th.. string "650".

Warning: may bp. only one 8TR' or only one CRR, In a logical oompartson, See
CRR, tor more Info.

t REX'

Format:
Examples.

HEX'(aexp)
PRINT JlFX,(5000)
PRINT "$";RJUlT$(IIr.X$(32) ,2)

The REX' function wll1 conver-t aexp to A four digit h"xaclecimal number In string
format (the seconcl example shows how to get a two digit hex number).

Note: no dollar sign ($1 Is placed In front of the hex digit atrlng.

Page 72 BASIC XB Reference Manual

the Game Controll"rs

Using the Game Controllers

PADDLE, PTRIO
PEN, STIClt

Th" functions discussed In this chapter allow you to access the paddle, Joystick,
And light pen easily and quickly.

f PADDLE

FOMll8t,
Exampl e:

PAOOLE{aexp)
PRINT

The PADDLE function ..,turns the current value of the paddle In port aexp (0'·1).
The value r"turned will be bet ...een 1 nnd tnclustve, with the value Increasing
as th" paddle knob Is turned counterclockwise.

f PTRIG

Fortna t e
Example:

PTRIG(aexp)
100 IF PTRIG{I)=O PRINT "Missile Fired!"

PTRIG returns a 0 If the trigger button of the pnddle I" port e.exp Is pr essed,
Otherwtse, It returns a value of I.

f PEN

Fonnat:
Example:

PEN(aexp)
PRINT "light pen at ";PEN(O);",";.EN(I)

Th .. PEN function simply r ..nds the ATA RI light pen r .. and returns the lr
contents. If aexp Is 0, the ho rIzontnl posttton Is returned; It aexp Is 1, the vertical
posttton Is returnE><!.

r STIGR:
Fonr.at:
r.",,",pJe:

STICK{."xp)
100 .nl" STICK(I)

Thc STICK function r e tur-ns the position value of the joy&t1ck In port aexp (O-I), ns
defined tn the following diagram,

*
8 J.• 6

J.J.., 15, 7

.1.3

BASIC XII: Reference Manual Page 13

RSTICK , VSTICK
STRIG

Formst: HSTICK(a ..xp)

Using the Game Controllera

The RSTIC K tunc tion returns an easily usable code tor horizontal movement of a
given joystick. aexp 15simply the number at the joystick port (O-n, and the values
r .. turned (and their meanings) are as follows:

-1 If the joystIck Is pushed left
o If the joystick Is centered

+1 Ir the j oys t Ick Is pushed right

Here Is an example of RSTICK In use:
II Let Dir="stickll'
21 If Dir=-1 Then Print "\. LIft"
JI If Dir=1 ThIn Print "e 5toPPld"
.1 If Dir=1 ThIn Print .. , .. Right"
.. 5010 II

VRTICK(sexp)

The VSTIC K function returns an easily usable code for vertfcal movement of a
given joystick. aexp Is simply the number of the joystick port (0-0, and the values
returned (and their m eerrtngs) are as follows:

-I If the joystick Is pushed down
o If the joystick Is centererl

+1 It the joystick Is pushed up

HNe Is an ex am pIe of VSTICK In use:
II LIt Dir=Vatlckll'
21 If Dir=-1 Then Print "\. Down"
n If Dir=1 ThIn Print "e 5topped"
.1 If Dir=1 ThIn Print "\t UP"
51 50fo II

f STRIG

Fonnnt:
hlmple:

STRIG(aexp)
100 IF THEN PRINT "Fire To r podo"

The STRIG function works the same as the PTRIG function, except that It Is used
with the joysticks tnstcad of the pnddles. aexp specllli!" the joystick port (0-0.

Page 74 BASIC XI: Reference Manual

Graphics Introducing Atal'l Graphlca
Mode 0

This chapter describes the BASIC XE statements that allow you to manipulate the
wide variety oC screen graphics available on the Atarl personal computers. BeCore
going Into the graphics commands, a little background about the modes avallable
would be use tul ,

Introducing Atal'l Graphics

The table below summarizes the graphics modes available via BASIC XE. A quick
glance down the "Ty!"'" column wlll show you that the Atarl supports two types oC
graphics, text and grid. In text graphics each pixel represents an ATA SCII
character, while In the grid modes a pixel represents a box or color. The size or a
pixel depends upon the graphics mode. In all graphics modes, position 0,0 Is at the
upper lett corner oC the graphics area; moving right Increaaes the column value,
and moving down Increases the row value. The diagram at the end or this section
Illustrstes this coordinate system visually.

IC you look at the column headings In the tahle, you wlll notice two "Rows"
columna. "Split Rows" Is the number oC rows when you are using the graphics mode
In conjunction with a text window, and" Full Rows" reCers to the number oC rows
when used without the text window.

Following the tahle are short descriptions oC these graphics modes.

Spilt Full
Mode Type Columns Rows Rows Colors
-0- Text --4-0- N/A -f4 J::5

I Text 20 20 24 5
2 Text 20 10 12 5

Grid 40 20 24 4
4 Grid 80 40 48 2
5 Grid 80 40 48 4
II Gr Id IRO 80 96 2
7 Grl1 1Il0 flO 96 4
8 Grid 320 160 192 1.5
9 Grid AO N/A 192 16
10 Grid AO N/A 192 9
11 Grid flO 192 16
12 Text 40 20 24 4-5
13 Text 40 10 12 4-5
14 Grid IRO 160 192 2
15 Grid 160 160 192 4

Mode 0: this mode Is the 1 color, 2 luminance (brightness) deCault mode Cor Atarl
Personal Computers. It contains a 24 line by 40 character screen matrix. The
derault margin settings oC 2 and allow characters per line. Margins may be
changed by POKF.lng I.I\fARGN and RMARGN (82 and llomesystemshave
dlCCerent margin deCaull settings. The color oC the characters Is determined by
the background color. Only the luminance oC the characters can be dlCCerent.

BASIC XE Reference Manual Page 75

Introdudllg Atarl G...
Modps 1 thru R, 12 i s
----_._------------------_..

GropldC!s

Modes 1 and 2: these two ;,-color arc tex t modos, Charae ters In mode 1 are
twic-" the wid-th of those in mode 0, but. nre P", same height, while those In mode ?
are twke the wfilth a nd 1>d"" the height of those In mod .. n. In the spltt-screen
mode, PRINT will pr int d&tll in the text window, and PRINT f6 will print data In
the modo 1 or 2 Itrnphl". window.

The default colors depend on the type of chnr acter Input, defined In the
t ebl e:

Character TyP"
0 •• 9 ol: A.. Z
Cntl Ch r s & a •. z
Inverse 0 •• 9 ol: A•• Z
Inv er se Cntl Chrs &: RHZ
PI r.yf 1c 1d and Ilorder

Sl-:TOOIJ.)R
Reltlster

I)
I
2

[lefsul t (,.olor
Orange
Ll ght (Jreen
Dark Rlue
Red
Black

Note: se-e SETCOI.O n to e harar-te r colors.

fin r s Arp In uppr-roase non-inverse
form. To print Icw.u-casc letters Rnd f{,'uphics characte.rs, use a POKE $2F4,$E2.
To return to lIppt:r use POKE $2i"4 JSEO.

t,hP5P. rour " c-olor- grid mor.rs Arc at so !lplit-screen displays
i" t heIr d e Ia ul t st nt o , hut mny bc ehr,nv,..d to full """'IOn h)' a1ding 16 to the mode
numbur, Modes:'l, 5, and 7 only fn grid In mode 15 the pixels are
sm el Ioxt , thereby g-ivill){ thr ! resolution.

these t hr r-e 2-coior Rrid modes lin advantage ovr-r the
4-color g-rid in that they r r-qulr e RAM space, they may be
used whe-n only two ('0101'5 s...f" RAM Is rrowdf'd.

Mode 8: thi."l grid nlrx1p Vivps re-sol ut ton of all. Afl It tRkes A Jot of RAM
tonNain hind of r r.sol ut l-m , it c en only accomrnods t 11mnximum of one color
and two h.mfn nncos , ns rnodo u.

Moden 12 and 13: thpf:f' tWI) t ex t a1"e vr-t v of using single
A r-be r-er-t e r-s dpfinHlof\ in to de ter-m lne how to

rr-pr eannt thn t c hn r nc t o r , t ho y uso bit nnd In terpr c t the-m 8S colors, 89
ff)110W1:

IIi t

00--
01
1 (I
11

f, t:TCOWR

---4---
IJ
1
2 /

'1' te c harac tor- ls in Inve-rso vtdeo, 3 is used, o t.he r wl se 2 is
usert, This you to have fi color on t.he acreen vt onn ttme, although you
m n y h nv e only 4 ('01nf5 in 8 sing-le

Page 76 BASTe XI': Reference Manual

Graphics Introducing Atart Graphics
Modes 9, 10, and 11

Modes 9, 10, and 11: these are the GTtA modes, and are somewhat different from
all the other modes. Note that these modes do not allow a text window. Mode 9 Is
a one color, lR luminance mode. The main color Is set by the backgroiiiidCOi"or,
and the luminance values are determined by the Information In the screen memory
Itself. Each pixel Is four bits wide, allowing for 1R different values (0-15). These
values are Interpreted as the luminance of the base color for that pixel. Mode
11 Is similar to mode 9 In that the color Information Is In the screen memory ItlOClf,
but the Information for eaeh pixel IIIInterpreted as a color Instead of a luminance.
ThIJ$ there are 16 colors, all of the same luminance. The lumlnanee Is set by the
luminance of the background color (default Is 6). Mode 10 Is scmewhat of a
crossbreed of the other two GTIA modes and the norinlii"iilo<les In that It offers
lots of colors (lIke the GTIA modes) and uses the color regtsters (Itke the normal
modesl, I!owever, since mode 10 allows 9 colors, It must use the player color
registers as well as the other color registers. The following table shows how the
pix "I values relate to the color registers and what BASIC XE command may be
used to set each color register.

Pixel Syst.... Reg. BASIC XE
Value R"l:lst"r Addr Statement
-0- PCOLIl.O 704 PMCOLOR O,&C"P

1 PCOLRI 705 PMCOUlR l,aexp
2 PCOLR2 706 PMCOUlR 2, aexp
3 PCOLR3 707 PMCOLOR 3,aexp
4 COJ.ORO 708 SE1T:OUlR O,aexp
5 COUlRI 709 SETCOLOR l,Rexp
6 COLOR2 710 SETCOUlR 2,aexp
7 COl.OR3 711 SE1l::0UlR 3,aexp
8 COLOR4 712 SE1l::OLOR 4, aexp

BASIC XE Reterence Manual Page 77

GRAPHICS
SETCOLOR

Fo rmat s
FXlmple:

GRAPHICS aexp
GRAPHICS 2

GRAPHICS fGR.)

Graphics

The GRAPHICS st atement Is lIsf>d to select one of the graphics modes discussed
above. It automatically opens the graphics area of the screen fS:) on channel #6.
As a result of this, it Is not necessury to specify a channel number when you want
to PRINT to the text window, since It Is still open on channel #0. aexp Is the
mode numb..r as used In the table at the start of this chapter, and must be positive.

Modes 0, g, 10, and 11 are full-scrpen display only, while modes 1 through 8 are
default to split-screen displays. To override the split-screen, add 16 to the mode
number (aexp), Addlnll prevents GRAPHICS from clearing the screen memory.

SETCOLOR (SE.)

Fo rma t r
Exampl 1':

SETCOLon
100 SF-TCOLOR 0,1,4

SETCOLOR Is used to set the hue and luminance of one of the color registers.
eexpl Is the number of thf> color register (values 0-4 I..gall, eexp2 Is the hue (see
following table), and eexp3 Is the luminance (0-14, even numbers only, are valid).
the largpr aexp3 Is, the brighter the color. The following table shows the
aexp2 val ues and corresponding colors:

aexp2 Color Color
0 (;roy 8 Rlue
1 Gold 9 LIl1;ht Rl ue
2 Ornnge 10 TurqUOise
3 Red-Orange 11 Green-Blue
4 Pink 12 Green
5 Violet Yellow-Green
r. Rille-Violet 14 Oranv,e-Green
7 RI ue 15 1.I ght

Note: actual colors will vary with typ" and edjuannent or TV or monitor used.

Thc following table shows the d"fault values for the (iv,' SETCOLOR registers:

Reg Value Color l.1m Color
-0- $2il -2- -8- Orange
1 $CA 12 10 Grepn
2 $94 9 4))ark Rlue
3 $46 4 6 Pink-Rpd
4 $00 0 0 Rlack

SETCOLOR usps values 0 to 4 to specify the color reglstpr, whllp COLOR uses
different values. Tr ansl e tton between the two can be confusing, 90 careful study
of th.. teble on the following pagc Is advised.

Page 78 BASIC XE Reterence Manual

SETCOLOR ! COLOR Table

SETCOLOR!COLOR Table
COLOR

SE. Dncr ipt ion SE.GR Hod. lIa u. r.g and COlIlIII.nh GR Hod. lIa u. r.g, t
l:il wI

rand Bord.rtil Co or t har u.
IIf ord.r Co or ixtlS IX'

r IX'i ,:1 A..Z
I' I xt

1,2 GW' ' •• t • im• tc' ,I"" :JIa d or.r IX'

1Pix.l !lea:l 4 hF •ixt'x. , PF, • Bord.r II Ixtf Riv4 lid4,6,14 A
=

\III th xTI Hu. 0ix. , PF, ,. Bord.r 9.t fina Hu••

A t8 & oloEb IX' Hu. 1Iii 'tor.r lor I I , if chr
'Iea:l 4 PF • COlfr, 3 bf L yld,?9 0 a PIX' I 12,13 t air l ,I chr

N 0 td GW: lIid.o.
WI h Xt 0 4 Itar ,g.t fina .tc

COLOR (C.)

Fonnat:
El<lmpl es s

COLOR aexp
110 COLOR
COLOR 3

The COLOR st atement let" you choose which color will be used enr all subsequent
PLOTs and The aexp value chooses the color and so must be a positive
Integer 0.. 255. The color you get dependent upon the g raphtcs mode you're In,
as described In the table above.

Note: In text modes 0, I, and 2, the number can be Crom 0 through 255 (8 btts) and
determfnes the character to be displayed (and Its color In modes 1 /I 2).

Note: when BASIC XE Is rtrst powered up COLOR 0 Is the deCauIt.

BASIC XB Reference Manual Page 79

PLOT, DRA WTO
POSITION, LOCATE

PLOT (PL.)

Graphics

Fonnat:
Exsnpl e:

PLOT aexpl,aexp2
100 PLOT 5,5

The PLOT command Is used to plot a pixel In the graphics window, aexpl specifies
the column (X-coordinate) of the pixel, and aexp2 specifies the row
(Y-('oordlnate). The color of the plotted point Is determined by the Isst
COLOR statement executed. To chsnge this color (and the color of the PLOTted
point) use SETCOLOR. Valid pixel coordfnates are d"pendent on the graphics
mode being used. The range of points begins at (0,0), and extends to (columns In
mode)-l In the x direction, and (rows In mode)-1 In the y direction.

DRAWTO (DR.)

Fonnat:
Exsnple:

ORAWTO a"xp1,a"xp?
100 DRAWTO 10,a

The DRAWTO statement draws a line from the current position of the graphics
cursor (se t by a previous PLOT, POSITION, or DRAWTO) to the location
(aexpl,aexp2). aexpl represents the X coordinate (column) and aexpll represents
the Y-coordlnate (row). The color of the line Is dptermlned by the last
COLOR st a temen t,

POSITION (POS.)

Fo rma t t
Exsnple:

POSITION nexpl,aexp?
100 POSITION 0,0

POSITION places the invisible graphics cursor at the Iocs tton (aexpl,aexpZ) on the
s",p"n, and may be used In all graphics modes. In mode 0 only, POSITION affects
the text cursor, not the graphics cursor. --

Note: the cursor does not ac tualty move until the next command that uses the
cursor.

LOCATE (LOC.)

Fonnat:
Exampl e:

VOCATE aexpl,8exp2,avaf
150 LOCATE 1!,15,X

The LOCATE s te tement retrieves the value of the pixel at coordinates
(aexp1,aexp2), and stores It In avar.

Page ao BASIC XI! Reterence Manual

Graphics

Fonnat: XlO lR,#6,O,O,"s:"

XIO (X.) F111

XIO rm

This special application of the XIO statement fills nn area on the screen between
previously PLOTtl'd and DRAWTOed bounds ,,1th a non-zero COLOR value. The
zeroes In the XIO nre used as dummies, but nre required. The following steps lIlus-
trate the fill process:

1. Pick the COLOR.
2. PLOT bottom right corner.

0 RAWTO upper right corner.
4. DR AWTO upper left corner,
5. POSITIO N th(, cursor at the lower left corner.
6. POKE addeess 765 with the fill COLOR value.
7. Make the XIO rm call.

This method Is used to fill each horizontal line from top to bottom of the specified
area. The fill starts at the left and proceeds across the line to the right until It
reaches a plx .. l which contains non-zero data (will wrapnround If necessary). This
means that XIO 'Ill cannot be used to change an area which has been filled In ,,'Ith
a non-zero value, 8S the fill will stop.

Warning: XIO 'Ill will go Into an InrInlte loop If you attempt to put COLOR 0 on a
line which has no non-zero pixels. Pressing <BREAK> or <SYSTEM IIESET> can be
used to stop the fill If this happens.

BASIC XE Reference Manual Page 81

Sp.ce For Your Not ..s

For Your Not'-.

PAge 82

Gr aphlca

BASIC Xl; Reference Manual

Player/MI...Ue Oraphlcs

Player/Mla8Ile Graphics

introducing P/M Graphic.

This chapter describes the BASIC XE commands and functions used to sccess the
Atarl's Player-MI9Slle Graphics. Player Missile Graphics (hereafter usually
referred to as simply "PMO") represent a portion of the Atarl hardware totally
Ignored by Atarl BASIC and Atarl OS. Rven the screen handler (the S: device)
knows nothing about PMO.

BASIC XE goes a long way toward remedying these omissions by adding seven PMO
statements and two PMG functions to the already comprehensive Atarlgraphtcs.
In addition. four other statements and two functions have significant uses In PMO
and will be discussed In this chapter.

Introducing PIM Graphics

For a complete t ..chnlcal discussion 01 PM0, and to learn at even more PMG
"tricks" than are Included In BASIC XE, read the Atnrl document entitled "Atarl
400/800 Hardware Manual" (Atarl part number COI65S5, Rev. 1 or later).

We stated above that the S: device driver knows nothing or PMG, and In a sense
this Is proper: the hardware mechanisms that Implement PM0 are. for virtually all
purposes, completely separate and distinct trom the "playfleld" graphics supported
by St. For example, the size, position, and color at players on th.. video screen are
completely Independent of t.he ORAPHICS mode currcntly active. In Atarl (and
now BASIC XE) parlanc.. , a "player" Is simply a contiguous group of memory cells
displayed as a vertical stripe on the scre... Sound. dull? Conslder: ench player
(there are four) may be "painted" In any of the 128 colors available on the Atarl
(see 8ETCOLO R tor specific colors). Within the vertlcm strl"". ea"h bit set to 1
paints the player's color In the corresponding pixel, while each bit set to 0 paints
no color at all! That Is, any 0 bit In a player stripe has no effect on the underlying
playfleld display.

Why a vertical stripe? P.efer to the flgure at the end of this section tor a rough
Idea of the player concept. If we define a shape within the bounds of this stripe
(by chllnging some ot the plsyer's bits to I's), we may then move the stripe
anywhere horizontlllly by a simple register POKE (or via the PMMOVE statement In
BASIC XE). We may move the player vertically by doing a simple circular shift on
the contiguous memnry block ",presenting th<: pla)""r (again, the PMMOVE state-
ment a1mpllfles this proce...I,

To slm pllfy:
A player \i actually seen as a stripe on the screen 8 pixels wide by 128 (or
256, see below) pixels high. Within this stripe, you can POKE or
MOVE bytes to establish what Is essentially a tall. skinny picture (though
much of tl1e picture may constst of 0 bits, In which case the background
"shows t!lrough"). II.lng PMMOVE, you may then move this player to any
horizontal or v ..rtlcal location on the screen.

BAilie III Reference Manual Page 83

PIM Graphics Conventions Player/lo'lsslle Graphics

To compllcatc:
For each of the rour players there Is a corresponding "missile" available.
Missiles are exactly like players exe.. pt that:

1) they are only 2 bits wide. and all fOtlr mlssll .. share a single block
of memory.
2) .. ach 2 bit sub-strtpe has an Independent horlmntal position.
3) a missile al ways has the same color as Its parent player.

AKaln. by ustng the BASIC XE statements (MISSILE and PMMOVE. for example),
you the programmer need not be too aware of the mechanisms of PMG.

UPOS dbl - sgl

Hpos
48-+

10....
"pos
+-2118

plM Graphics Conventions

1. Pl a ye rs are numb.-red from 0 throuKh 3. Each player has a correspon<llng missll ..
WhoSP. number is 4 gr-ea t.er thon that of parent player, thus rr.isslleR are
numbered 4 t hroug h 7. In the BUMP function, the "playtlcl<ls" are actually the
cnlors as defined by SETCOLOR, but are 8 grater than the SETCOLOR reKlster
VRJUP., Rnd M are numbered 8 .. 11.

2. There is sorn .. tnconststency In which way Is "up". PLOT, DRAWTO. etc. are
lO.ar .. that 0,0 Is the top left of the screen arrd that vertical position numbering
Inc ro ase s ao you KO <lown the screen. PMMOVE And VSTICK. however, do only

screen positioning, and define "+" to be up and "_" to be down.

3. "pmnum" is an abbrev lntfon for Player-Missile Number And must be 8 number
from 0 to 3 (for pl ayors) or 4 to 7 (for mtsstl es},

PAge 84 BASIC XB Reference Manual

Playerl "'IssUe Graphics

Fonnat I PMalAPIIICS aexp
Exlll1lpl1'1 PMG. 2

PMGRAPHICS (PMG.)

PMGRAPHICS

This statement Is used to enable or disable the Graphics system.
aexp should evaluate to 0,1, or 2, as rollowal

o - Turn ote PMG
1 - Enable PMG, single line resolution
2 - Enable PMG, double line resolution

Single and Double line resolution (hereafter rerere<! to as Modes") rerer to
the hE'lght which a bytE' In the player "stripe" cccuptes - either one or two
television scan lines (GRAPHICS 7 has pixels 2 scan lines high, ilkI' PMG.2, and
GRAPHICS 15 has pixels I scan line hlgh,lIke PMG. I). The secondary Implication
or single line versus double line resolution Is that single line resolution requires
twice as much memory space as double line - 256 bytes per player versus 128
bytes. The rollowlng dlal(ram shows PMG m"mory usage In BASIC XE, but you
really need not be aware or the mechanics IC you use the PMA DR runcttom

PI ay.r3
Playu3

PI ay.r2
Playul

Play.r2
Playue

'13 I '12 I HI I He Play.rl

Playue

HEHTOP points HI I '12 I'13 I '14
tOll of th.

••488
••38e
.U••
••28e
.u.e
••18e

Pt18ASE

NOTE.

Pt1G. 2 Pt1G. .ne•

••788

.$:588

••488

••388

Pt18ASE

BASIC XI! Reference Manual Page 85

PMCOlOR
PMMOVE

Fonnat:
F:xlI'YlpJe:

PMCOLOR (PMCO.)

PMCOLOR pmnum,aexpl,aexp2
PlllCOIJ)R 2, 12, 8

Player! Po'lsslle Graphics

PMCOlOR Is Identical to SETCOlOR In usage except that a P!M color register
rather than a playtield graphics color register Is set to hue aexpl and luminance
aexp2. Note: there Is no correspondence In PMG to the COLOR statement of
playfleld graphics - none Is necessary slncp each player has Its own color.

The example above would set player 2 and missile 6 to a medium (luminance 8)
green (hue 12).

Note: PMG has default colors set on power-up or <S YSTElI' RESET>.

PMMOVE

Fonnat:
Examples:

pmnum [,aexpll
PMMOVE 0,120; 1
PMMOVE I,RO
PMMOVE 4;-3

[;aexp21

Once a player or missile has been "defined" (via POKE, MOVE, GET, BGET, or
MISSILE), the truly unique features of PMG under BASIC XE maybe utflfzed, With
PMMOVE, you may position each P!M shape anywhere on the screen Independently
In the blink of an eye. Because of the hardware Implementation, though, there Is a
difference In how horIzontal and vertical positions are specified.

aexpl Is tak..n to be the absolute position of thp I.. ft edge of the "stripe" to be
displayed. This position ranges from 0 to 255, though the Iowest and hlgh"st
positions In this range are beyond the edges of the display screen. Note: changing
a player's width (see PMWIDTH) will not change the position of Its left edge, but
will expand the player to the right.

aexp2 Is a r .. latlv.. v .. rtlcal movement spectrter , Recall that a "strip,," of p1a.yer Is
1?8 or 256 byte. of memory. Vertical mov ..ment must be accomplished by actual
mov em en t of the bytes within the stripe - towards either higher memory (down the
scr-een) or lower memory (up the screen). IlASIC XI': allows you to specify a
vel tical movem en t between -255 (down 255 plx els) and +255 (up 255 pixels),
fnctuatv e ,

Notp: the +1- conventton on vertical movement conConns to the value returned by
VSTIC K. For "xample, PMMOVE 2;VSTICK(2) will move player 2 lip or down (or
not move him) In accordance with t he joystick position.

Note: SET 7,aexp may he used to tell PMMOVE whether a P!1Il should "wrap
around" (from bottom of screen to top of screen or vice versa) or should dfsappear
as It scrolls off the screen.

Page 86 IIASIC XB Reference Manual

Player/ Missile Graphics

MISSILE (MIS.)

MISSILE
PMWrDTH

Fonnat:
Example:

MISSILE pmnum,aexpl,aexp?
MISSILE 4,4R,3

The MISSILE statement a\lows an easy way for a parent player to "shoot" a missile.
pmn.... Is the missile number (4-7), aexpl specifies the absolute vertical posttfon of
the begInning ot the missile (0 I. the top of missile memory), and aexp2 specIfies
the vertical height of the mls,n". For example, MISSILE 4,84,3 would place a
missile 3 PMG pixels high at pixel 64 from the top.

Note: MISSILE does not simply turn on the bits coerespondlng to the position
specified. Instead, ti,e bits .pecltied are exctusfve-orved with the current missile
memory. This allows you to erase the previous missile pmnllm when creating
another. For examplr:
11 Missil. 4••1.1
21 Missil. 4.41.1
The first statement crrates a missile 1 pixel high at vertl"al position 40. The
second statement. erases the first mIssile while creating another 1 PMG pixel
mIssile at vertical position 41, thus giving the .·ffect of n moving missile.

PMWrDTR (PMW.)

Fonnat:
F.>cample:

PMWIDTH pmnlm,aexp
PMWIDTH

Just as PMGRAPRICs allows yOIl to select sIngle or double pIxel height,
PMWIDTR a\lows yOIl to specify the screen width of players and ml.slles.
However, where PMGRAPHICs sclects the vertical resolution mode for 8\1 players
and missiles, PMWIDTH allows the width of each player or missile to be specifIed
srparately. aexp Is 118"d for Ihe width and should have a value of I, 2, or 4 -
representing the number ot color clocks ("qulvalent to a pixel width In GR. 1) wide
each bit In a player definition will be.

Note: PMG. 2 and PMWIDTH 1 combine to allow each bit "r a player definition to
be equivalent In size to a GR. 7 pixel, while PMG. 1 and PMWIDTH 1 eomblne to be
equivalent to a GR. 15 pixel - not altoget.her ac<'idental occurences,

Note: although players may be made wIder with "MWIDTH. the resotutton then
sufrers. Wider hllth-resolatlon "player-s" may he marie by pls.clng two or more
separnte players stde-by-stde (as In the second example program at the end or this
chapter).

BASIC X. Reference Manual Page 87

PMCLR , BliMP
HITCLR

PMCLI'. (PMC.}

Grsphlcs

Fo rma t s
I:x_ple:

pnrnm
P'IICLR 4

PMCl R "clear-s" a pl ayer or mIssile area to All zero hytes, thus "erasing" the p/PI'.
PMClR Is Sware of whst P\1c, mode Is actlve and clears only the appropriate
amount of m..mory. Caution: pmnum vatues 4 through 7 All produce the same
action - all missiles are r-leared , not just the one specified. To clear a single
missile, try SET 7,0 : PMMOYE N;%55.

f nilMP
Fonnat:
F.xample:

BUMP(pmnun,aexp)
IF IlUMP(4,1l Tum f>P.{MP(O,8)

BUMP accesses the P;'" ",,111,10'" regl"ters of the Atarl and returns a J (collision
oocur r-ed) or 0 (no collision oocurr-ed) as "ppropriale for the pair of objects
sp"clfled. Noll' that the spcon<! parern eter (aexp] may he either a player number
or playtleld number (spe the- spctlon on PMG ccnventfons, above). Valid BUMPs:

PlAyer to fIlAyfO'l":
Player to Plnyfl"!d:
Missile to "Iaycr:
"'isslle to Play:!pld:

I\IJMP(O-3,O-3)
)

1ll1'l!1'(4-7,1)-3)
mJolp(4-7, ft-ll)

Note: BUMP(p,p), wh',." the p's are I) through 3 nnd Identical, always returns 0
lI.e. a pl ayer CAn't coilldc with Itself).

Note: we edvtso t ha t YOIJ thf\ collision r eg Ist er-s ie you huve not checked them
in It If)ng or HCtl'.f you are through chC'ckfnl{ them e t any given point In R
pr og rurn , You c ..tn do t hl s HITCLR.

HITC I. R

Fo rmnt r
Example:

"ITelR
100 IIITCI.H

HITeLR r ese ts the regl"t"rs us"d by RUMP, thus .woldlng spurious
coUtston Wf' :'5UJW'f'St that you IIlTCJ..R just, bernre you rio !lOmethinlt
that mjght create a collision (move or- 8 P/M, change the pla;yfJeld, ele.l •
. you could US" "ITeLR lmm""iAtely after you check for collisions
(usIng BUMP).

BASIC XI! Reference Manual

PlayerlMlsslle PMADR, UsIng POKE and PEEK wIth PIM's
UsIng MOVE, BOET and BPUT with P/M's

t PMADR

Fonnat:
Example:

PMATlR("""un)
PO=PMATlR(O}

The PMADR function returns the memory address of any player or mlSlllle. It Is
useful when you wIsh to MOVE, POlE, BOET, etc., data to (or from) a player srea.
Note: PMADR(m} - where m Is a mIssile number (4 through 7) - returns the same
address for all missiles.

UsIng POKE and PEEK wIth PIM'a

One of the most common waY" to put player data Into a pla)",r atrlpe may well be
to use POKE. In conjunction with PMADR, It Is easy to wrIte understandable
player loadIng rout ines, for example:
11 for Loc:" To 52
21 •••d A,'ok. '.adrCIJ+LoC,A
:II '.x' Loc
.1 ••,. S",SII,Sff,.II,S"

PEEK mIght be used to find out what data Is In a particular player locatIon.

Using MOVE with p/M's

MOVE Is an efficient way to load a large player andlor move II player vertically by
a large amount. This ability to MOVE data eIther upwards or downwards allows for
Interesting possibilities. Also, It would be pasy to have several player shapes
contaIned In strlp<'s and then MOVEd Into place at will. For example,
NOY. AdrCA'J,'MadrCZJ,lZ1
could move an rntlre doubl .. line resolution player from A$ to pIa).." 2, and
'ok. 'MadrC1J,SffINOY. ' ••drC1J,'MadrC1J+l,127
would fill player 1'a strip<' with all "on" bits, creating a solid str tpe on the screen.

Ualng BORT and BPUT wIth PIM'a

As with MOVE, BOET may be used to fill a player memory quIckly with a player
shape. The difference Is that BOET may obtaIn a player directly from the dlak!
For example,
I,., .:I".adrCIJ,SII
would get a PMO.2 mod .. player from the disk file OPENed on channel 3, and
".' .','MadrC'),$511
would fill all the rntastles nnd playera In PMG.l mode - wIth a alngh' atatement!

BPUT would probahly he most commonly used durIng program development to save
a player shape (or shapes) to a tile for later retrIeval by BOET.

BABIC XII: Reterence Manual Page 89

Using USR with P!M's
Two P!M Graphics Programs

Using USR with PIM's

Player! Missile Graphics

1..
111
121
13.
14.
15.
In
17.
JII
U.
2..
21.n.n.
241
25.
261
27.
211n.
I"U.U.n.
UI
15.
U.
37'
IIII"4"41.
42 •
41.
44 •
45.
4ft•
47.
411

Recause of USR's ability to pass parameters to an assembly language routine. PMG
functions (written In assembly language) can be Incorporated easily Into to
RASle XE. For example,

might call an assembly language program (at address P!I!BLlN K) to blink player 2.
whose slz" Is 12R bytes.

Two P!M Graphics Programs

5.teolor 2•••• :••• "lIot•• still in 'R
p.,r.phlcs 2: ••• "doub.. lin. r.s"
l.t Mldth=I:Y=41: ••• "Inltl.llzln."
PMlr .:PMlr 4: ••• "cU.r pUI/.r ••nd .issil. I"
'!MOlor ',ll,IIA." n. Ric. gr••n plavl''''''
p=pudrCIJI ,5 .ddr.ss of pl.l/.r ..
for I=P+Y To P+Y+41 ••• ". 5 .I...nt pl.l/.r"
••• 01 VI: ••• "5•••• Iow for DATA sch.....
POk. I.vl: ••• ".ctu.JII/ s.ttln. up"

lI.xt I
for N=l To 12.: ••• "pl.l/.r Mv ...nt loop"
P_v. '.X: ••• "_u.s pUI/.r horUontalll/"
50und I.X+X.I.1SI ••• "Just .aun. so .. nois."

lI.xt X
Missill' I,.Y,.l:A.1lIII ". on ..-high lIIi5Sil•• t top of pla"er"
"isSll. I.Y+2.1: ••• ".noth.r. in .lddU of Plal/.r"
"iSsll. I.Y+4.1IR•• ".nd .t bOttOM Of pl.l/.r"
for X=127 To 255:Usil. Mu...nt loop"
PIUIOVI' 4,1:1•• 11M"•• llIi5sil1' ,n
50und 1.25S-X.ll.1S
If CX&1'=71 ".u.rl/ .I.hth horiZ. position"
"ISSii. '.Y.S: "I/ou h.V. to 5 •• this to ••Ii.v. it"

Endif :••• "I/ou cOUlti h.U. h.d .n El5E. of cours."
lI.xt X
P.-o". 1,1:1." "50 Width do.sn't Chang. on scr••n"
Mldth=IUdth+2,Ra....... ·11 th. PI.I/.r wid.r"
If Nid1h)4 Than Width=.
Ptwidlh '"WidthIA nth. n." Width"
PMlr 4:1... "no ..r i •• il."
'oto 2•• : R•• "do It U J ••ain"....
••• -- th. PI.I/.r'S sh.P. DATA -"Ra. .. S4Z1S421"
• a...", 161'.....I'M "SID. ."
.... "Sff It.... ."
• a" ..", ..
D.t. ",.SID.lff.SID.S"

Notice how the data for the player shape Is built up - draw a picture on an R-wlde
hy n-hll(h pteee of I(rlrl paper, fUllnl': In whole cells. Call flllcd In cells '1'. and
empty cells '0'. Convert the l's and O's to hex notation and, viola! -- you have
your pl ayer,

This prog ram wlll run notlcably faster If you use multiple statements per line. It
was written 05 Above Cor clarity, only.

Page 90 BASIC XE Reference Manual

Player/ Missile Graphics

A more complicAted program, sparsely commented.

Two P/M Graphics Programa

1..
111
U.
U.
14.n.
U.
17.
U.n.
%..
U.
U •n.
U.
%111
%111
%71
%11n.
:I"111n.
U.u.
n •
111117.
n •
:171...
U •.,.
.31...
U •
.111
O ••••n •
5••
SlI
U •
n •u.
5111...
57.

,r.,hieS .:.... "not n.c.ss.rll. just ,r.tti.r"
'Mlr.,hics %I'MClr ':'MClr 1
,.tcolor %•••• "MColor •• 1%.'I'MColor 1.1%.'
"='INdrl.J,'l=,...dr(1)I.'" ".ddr's Of % ,1.II.rs"
V'="IVOld=V'I.'" "startinl v.rtic.1 ,os'n"
H.=ll.'.,,, "st.rtinl horiZontal ,os'n"
for Loc=V'-' To V.+71....... II-high dOUItI. ,UII.r"..ad X
'ok. '.+LoC.IntlX,S.l••J
'ok. 'l+Loc.X&Sff

..xt Loc
R•• ".njIM1. it"
Lit ••dius=•• ,DII
..n. 1:.... "infinit. 100" '"
e=••ndo.. llSJ"MColor ••C."'MColor 1.e••
for Anll.=. TO ISS St., 5•••" "in Df'r••s. r ••MIt.r"
un.W=V'+.adius*5inlAnllll
Vch.nl.=Un.....Vold: "ch.nl' in v,os"
Hn.W="'+.adius*CoslAnll.J
'MMDv. '."n••;vchanl.:'MMDVI 1."nl••'IUCh.nll
.1.. "MOV. two ,Ial/lrs tOI.th.r"
Vold=Vn••
50und '."n••• l'.1%'50und 1.ln••• l'.12

..xt Anll.
• ... "just did a full Circl.,-

fndwhi I.
.... "WI It.tt.r .fVf. I.t h.r.'".... ,- the uncll ,Ul/.r DATI _ ..
....%1••21 ••21••21 ..
.... IC ..
.... "S.CI ..
••• "S1••••••1 ..
.... "S2•••.•1 1 ..

::: :1: :a'": :a"': :1: ".... """1 I'" "'1"••• "SI!7! ." •• .,. "
.... "S•••l .••••..•••••••1"••• "S, ••, ..1 , .1.. ..
.... "S••12 '1' .1.1 "S.7E2 • • ••__• •• •
.... "SZ" •••1 1 ..
.... "$1••••••1 1 ..
.... "S.CI••••••.. , ..
.... "S.IC•••••••••••••••....
D.ta S.IC•• S.CI•• Sl •••• S2•••• S•••2.S.E72 ••••S1•••f71
D.t•••••1.S'••' ••••lZ.S.7f:Z.SZ•••••l ••••••CI••••IC.

The factor slowing thts program the most Is the SIN and COS being calculAted In
the movement loop. If these VAlues were precalculated lind ptaced In an array this
progrAm would move!

RASIC XE Reference Manual Page 91

Space For Your Notes

Page 92

Space For Your N<ltes

Player/ Missile Graphics

BASIC XE Reference Manual

Sound

Sound

SOUND

This chapter Is devoted to the SOlJ'lD statement, and shows how to access the
many forms of sound available on Atarl IIome Computers.

SOUND (SO.)

Format: SOUND aexpl,aexp2,aexp3,aexp4

The SOUND statement causes the specified note to b<'gln playing as soon as the
statement Is executed. ThE' 110te will continue playing until the program
encounters another SOUND with the ""me aexpi or an rND. aexpib the voice on
which you want the Mood produced, and rnnges between 0 and 3, tnctustve,
al!xp2 Is the frequency (pitch) of the sound, and ranr,es b"tween 0 snd 255,
Inclusive. The lower aexp2 la, the higher the frequenr.y. aexp3 Is a measure of the
sound's distortion (fuzziness). ""lid numbers Are 0 -14, even numbers only. "
value of 10 creates pur.. tones like a nute, and II 12 produces sounds similar to a
guitar. aexp4 Is the volume of the sound. Valid values are 1 - 15; the lower the
number, the lower the volume,

Here Is a table for various musical notes using a distortion of 10,

Note: Low Notes High Notes
--C-- 14 29 60 121 0 243

8 15 31 64 128 255
Bb I ,,# 16 33 68 D6

A 17 35 72 144
Ab I G. 18 :17 76 IS:t

G 19 40 81 162
Gb I F· 21 42 ft5 173

F 22 45 91 182
E 47 91l 193

Eb I D# 24 50 102 204
II 26 53 108 217

Ob I C' 27 57 114

Middle C Is marked by a ,0", This program plays a C seale using the above values:

18 •• ad .,If .>255 lh.n End
21 1 ••• ll.11:Print •
JI for Malt=1 10 411: ••xt Malt4' 50to 1.
5. Data 14.15.16.17.13.1'.21.22.21.24.26.27.2'.11.IJ
6. Data 15.J7.4••• 2••5.47.5•• 51.57.6•• 64 •••• 72.76 ••1
71 Data .5.'1.'6.112.11•• 11 •• 121.121.118.14•• 15J.162
II Data 171.112.1'1.21•• 217.211.24J.255.258

Notice Ihat the DATA stat ..ment In Itne 80 ends with a 256, which Is outside of the
designRted rnnge, The 256 is used 88 an end-or-date marker.

BASIC XII: Reference Manual Page 93

Space For Your Notes

Page 94

Sound

BASIC XI: Reference Manual

Sorting ArraY" introducing the "'rray Sorting Statements

IntroduclnJ tit.. Array Sorting Statements

Rather than go directly Intn the descriptions of SORTUp and SORTDOWN, we
thought It best to begin with some comments and hints about their use, because
they hsve many foibles In common.

First and foremost, note that SORTUI' and SORTDOWN can 2!!!rbe used to sort
arraY". In their simplest form they are extremely easy to use. For example,
consider the following short program:
JI Ii. Arra,'(I,21)
21 for I=J To I:Input ",Arra,'(IIJlloxt I
JI Arrl,'
.1 for I=J To IIPrint Arra,'(Il)llext I.1 Run

This program simply snrts 5 INPUTted strings and then shows the sorted order. At
this time, we would like to suggest that yOll ty!"" In this program and try It out
(Keep It around - we wll1 use It more later). Give a..veral dltferent sets of words
as anawers. Note how neatly It sorts the warda Inlo ascending order.

Or does It? Try ..nterlng some words In uppercnse and SOme In lowercase. What
happens? Does It surpr lse you to find that "7.00" comes before "apple"? Actually,
the reason for this hehavlor Is readily understood once you realize that
SORTUp works on characters using ATASCII ordering (see Appendix A for a list of
ATASCII codes).

Even If we restrict ourselves to the "printable" characters In the ATAsell set
(alphanumeric and standard symbols), we find no real help. Digits come before
uppercase letters which come before lowercaee letters. but symbols are Intermixed
In no real useful fashion. Because the effects of this hodgepodge ordering may not
be desirable In a sorted list, you may wish to limit .. sort to a substring of the
string elements In a savar. For example, If you have a savar where each string
within It contains both a !,,"rson's name and their phone number, you may wish to
perform a sort based solely on names. Further, to ..nsure that the sorted order Is
consistent, you may wish to ensure that the names are stored In uppercase only.

Fortunately, SORTUp and SORTDOWN offer you the ahllIty to soet based on sub-
strings. And, while BASIC XE does not provide a built-In method of ohtalnlng
uppercase , non-Inverse strings, It Isn't very hard to build a subroutine that will do
the real work for you. For example, the following PROCEDURE converts all
characters In Its svar parameter StringS (not a savar) to non-Inverse, and converts
lowercase letters to uppercase: --
III Proceduro "TO Upper" Usinl
III Loca) I,ToMP
121 for 1=1 TO
131 TOMP=AsC(Strin,$(I))&$7f
1.1 If TeMP)S.1 And TO.,<S7b Then To.,=TO.,&$lf
151
"I lut I
171 (xit

....SIC XII Reference Manual Page 95

Introducing the Array Sorting Statements Sorting Arrays

For now, don't enter this subrouttne, Instead, let's Investigate the concept of
substrings, as mentioned above. Just change 11M 30 In that little program we
typed In earlier so that a LIST glvps you the following,
JI DiM ArraySII,21)
21 for I=J To I,Input "5trinl) ",ArraySII;): ••xt 1
II 5artup ArrayS Usinl ;1,1
41 for I=J To I,Print ArraySII;): ••xt 1
18 Run

Once again, enter some strings In r ...ponse to INPUT's prompt. This time, though,
pay special atten tlon to the third through fifth characters of each string. Notice
anything funny about the sorted order? That's right, it Is based solely on the
c harac ter s In those positions. If you have worked with RASIC XE string arrays at
all yet, the notation in line 30 may be both familIar and confusing. Perhaps
changing line 40 to the following will clarify the meaning of line 30:
41 for I=J To I:Prlnt ArraySII;I,I),ArraySII;): ••xt 1

This little example should serve to remind you that you may reference characters
within an element of a string array Just as easily as you may reference them In an
ordinary string. The "magic" character Is the semi-colon. 'tseparates the array
element number from the desired character positions. (And, aa the second usage of
ArrayS In that same line shows, the semi-colon Is always necessary when referring
to an element of a string array.)

Now, since the SORTUP of line 30 refers to the entire savar Arrays, there Is no
need for the following parentheses (and, tndeed, they are not allowed). Instead,
the keyword USING tells RASIC XE that we will be working with only part of the
array ondlor Its e l ern en t s, In particular, the semi-colon following USING serves as
a remlnder that the aexps following It should be used to define a substring of the
string elements In 8 sav ar ,

There Is one last copahllity of the sorting statements which WP. will discuss before
moving on to o t he r hetprul hints. The program we have been worktng with seems
all fine and good If we want to enter f'xactly five elements Into the array.
Suppose , thoug h, that we did not know how many elpments we'd be working with.
fear nOI, IIASIC XE ahe l! provide. Time for anothcr example:
JI DiM 5trinISIZI,21)
ZI for I=J To 21'lnput "5trinl) ",5trlnISII;)
21 If l.nI5trinISII;)) Th.n ••xt I
II 5artup 5triniS Using J To 1-1
41 for J=J To I-J:print 5tringSIJ;): ••xt J
II Run

The first chflnJ(e you will no ttc e Is that the FOR loop on Iln e 20 now INPUTs 20
str-Ings, The second change Is the Insertion of line 25. Instead of blindly
c:ontinutng to ask for Input until 20 items have hepn the program only goes
back for another If the leng th of the current strlnR" Is non-zero. That means t ha t
you may stop "nlerlnJ(Items at any time by hitting the RFTU RN key alone In
response to any INPUT prompt.

Page 96 BASIC XII Reference Manual

Sorting Arrays introducing the Array Sorting Statements

And look at the SORTtlP In line 30. Cnn you guess what the Using 1 To I-lis for?
That's right, only the first 1-1 elements of the array wlll be sorted! And tr, for
some reason, you wanted to never sort the rtrst element of the array, you could
have written
J. Sartu, Str'n,' Usin, %Ta 1-1

(Why would you ever do that? Well, mayhe you keep special Infonn8t1on about a
savar In Its first element, tbua having the actual data start at the second element.)

Well, so much for sorting string arrays. We haven't yet mentioned how to sort
arithmetic arrays, but It's jU!lt as easy. You Use the same statements,
SORTUP and SORTDOWN, but you use the name of an nrlthmetlc array as the first
argument, like this,
Sartu, An

Notice that Instead of following the array name by a dollar sign with string
arrays), you follow It by a pair of parentheses (to Indicate that the array Is
arithmetic). Since no element range was spectfled In our example, this statement
will sort elements of the array AO.

If you don't want to sort the whole array,you can spectry a range of elements to
sort, just like we did when sorting string The following will sort elements
3 through S, Inclusive, of the arrny TempO In descending order:
Sartdawn T• .,C) USln. I Ta I

There are two restrictions to bear In mind whcn sorting arithmetic arrays. First,
you can't spectry substring Indices (because numbers don't have substrings).
Second, and more Important, you can only sort arithmetic arrays, not matrices!
Thus, If you have the following DIMension line In your program-:--
1. AC.IJ,IC1.,%IJ.CC'.J

you could use SORTUP and SORTDOWN to sort AD and CO, but not 80, since It
has two dimensions and so Is a matrix.

Finally, ther.. are a couple of rules to keep In mind:
1) The ending clement number to be sorted must he great.. r than or equal to the

beginning element number (I.", you can't sort elemrnts 3 TO 1),
2) Roth element numbers must be within the DIMensioned bounds of the array, and

the previous two rule s also apply to the numbers you use to specify a substring
range when sorting savors.

BASIC XII Reference Manunl Page 97

SORTUP
SORTDOWN

SORTUP I SORTDOWN

Sorting Arrays

Fonnat:

F.xlITlples:
\
SORTUP larray [USING [aexpl TO

SORTOOVN!
SOR11JP Aarray
SORTDOWN Aarray USING Min TO Max
SOR11JP Sarray$ USING ;1,4
SORTDOWN Rarray$ USING 5 TO 10

Note: the ;aexp3,aexp4 option may be used onll when sorting savara, You can
not use It when sorting arithmetic arrays!

SORTUP sorts the .. Iements of an array In ascending ATARCII or numeric order
(d .. pe'ndent upon the arrAY's type), while SORTD01¥N sorts In descendtng order. If
no element range aexpl TO aexp2 Is specified (lst and 3rd examples), all elements
are sorted.

It an el ement range Is specltled, both begInning and ending elements must be
given, s"parAted by the keyword TO.

Note: If no substring ;ftexp3,aexp4 Is specified (4 t h example}, the sorting Is done
uslnl{ the string elements In theIr entirety. If a substrIng Is specIfied, both the
h ..glnnlng and ending of the suhstrlng must be specified, separated by a If
an element rang" Is not being used but a substring Is, the keyword
USING must precede the substring-marking semicolon (3 rd example).

Note: If a string elem"nt Is shorter than the speclrted encllng position of the
substring being used, the SUbstring for that el ..ment wl1l be shortened accordingly.
If two compared strings are equal, but one Is longer thaD the other, the longer one
Is $treater than the shorter one (e.g., "sbc"<"abcd"). This Is intuitively correct 88
well as being consistent with the other string comparisons available In BASIC XE.

Page 98 BASIC XE Reference Manual

Using Fixed Data In Your Frogram

Ualne Fixed Data In Your Program

DATA
READ

The three atatements In this chapter allow you to Insert and uttlrze fixed data In
your BASIC XE programs. These statements are DATA, READ, and RESTORE.

DATA (D.)

Format,
Exsnples,

DATA adata [,adata]
100 DATA 12,13,14,15,16
110 DATA Mlke,Becky,TOmmy,Kathleen
120 DATA" OO".ta wi th a , In It"

DATA Is used In conjunction with READ to access elements In a data list. A
DATA statement may be anywhere In a program, but It must contoln at least 88
mmlY adata Items os used In the REA 0 statement that accessea them; otherwise an
"No DATA to READ" error (.G) Is displayed on the screen. Wben more than one
DATA statement Is used, the adata Items form a single list. For exmnple, the first
two examples could Just as well be combined Into

100 DATA 12,13,14,15,16,Mlke,Recky,Tommy,Kathleen

Note' all characters except comma (,) and <RETUR N> are legal In adata.
However, If you put adata In double quotes ("adata"), then all characters except
double quote (") and <R ETUR N> are allowed (as In the last exmnple).

READ

Format I
EX"'"l'les I

RFAD varl [,var2 •••]
200 RFAD A,B,C,D,F
210 A$,B$,C$,O$,E$

The READ statement Is used to retrieve adata Items In R DATA list, Rnd store
them In program vartables tor use. When a READ'" executed, the first available
adata Item Is stored In verI, the second Is stored In var%, ..nd so on. The
adata It..m and the vartable Into which It Is to b .. stored must be of the same data
type (arithmetic or str-Ing),

The tollowlng program sums R group of numbers using REA D and DATA,

1. for .::1 TO S
20 e1K=1tt1n ••n.
4. print "Su" is ","
S' fn..
•• I.t. 1',11,1",07,47

BASIC XB Reference Manual Page 99

RESTORE

Format t

Examples:
RISI'ORE r l Ineno]
100 PESTORF
RESTORE X+2

Using fixed Da t a in Your Program

RESTORE (RES,)---------

nA81C X E US"s An ln te rnal 'pointer' to ke ep track of the nex t adata Item in the
DATA list to bt>. REAIl. Wh"n used wl'hout th .. opttonal Itneno , RESTORE reseta
thls polnter to the fl ..t In the first IlATA statement In the program.
When IIneno Is spectrted , RESTORE se ts the pointer to tho fIrst adata Item In the
DATA statement on th .. program 11npllneno. ThIs permits repetitive use of the
same adata Items, a8 shown In th" followIng example,
JI for .=2 To 1 -1
21 .ls10rl .1••
JI .Iad A,',N:A.'
.1 Print "TDtal is "IN
51 ... t •
lit fnd
.1 DUa JI,ll
12 lata 11,21

Page 100 BASIC XII Reference Manual

Acc..ssing Memory Directly

Accessing Memory Directly

PEEK
POKE

The commands In this chapt.. r allow you to access m"mory directly, and are v ..ry
useful when you want to Inspect and/or modify Atarl variables and routtnes, Each
of the commands In this chapter allows you to specify an optional bank number.
For a discussion of the meaning of this number, see EXTEND.

The statements dlseu5sed here are POKE, DPOKE, and MOVE, and the functlona
are PEEK and DPEEK.

f PEEK

FOl'll'l8t.
Examples.

PEFK(aexp [,bank»
1000 IF PEEK($4000,4)=255 TIIRN PRINT "Main $4000=255"
100 PRINT "Left Margin Is "; PEEK(R2)

PEEK Returns the value stored at memory location aexp. The address spectrted
must evaluate to an Integer between 0 and 65535. The value returned will be a
declmlll Integer betw"..n 0 and 255, Inclusive. This function allows you to examine
either RAM or ROM locations. In the first example above, PEEK Is uspd to
determine whether location $4000 In main memory contains the value 255. In the
second example, PEEK Is used to find the current left margin.

POKE

FOl'll'l8t:
Examples.

POKE aexpl,aexp2 [,bank)
POKE 82,10
100 POKE 87,20

The POKE statement puts the value aexp2 Into memory location aexpl. aexpl may
range In value between 0 and 65535, inclusive, nnd aexp2 has range 0.. 255. The
first example ohanges the screen's left margin from Its default value of 2 to a new
v alue of 10. To restore the margin to Its normal d"fault posttton, press <S YSTFM
RESET>.

Note. POKE cannot be used to alter \10M locatione,

While you are b"cornlng familiar with this statement w" advise that you ClrRt
PEEK at the memory location and write down the value before you POKE in a new
value. Then, If the POKE doesn't work as antlclpoted, you can POKE the original
value back In.

BASIC XB Reference Manual Page 101

DUEl{ I DPOKE
MOVE

AccessIng Memory DIrectly

t DPEEK

Format:
EXlIllple:

OPEEK(aexp r ,hank»
PRINT "VRrlable Name Table Is at ";DPEEK(SR?)

DPEn: Is very similar to the PEEK function, except that It allows you to find out
the two-byte value at the memory locations aexp and aexp+l. This Is especially
useful when looking at locations which contain address Information, as In the
above example. If you did this example using PEEKs, It would look like

Print "Variabl••a. Tabl. is at "JP••"UIIJ+P••"UIU*lZ1
It's obvious that using DPEEK Is much easIer.

DPOKE

Format:
Example:

OPOKE aexpl,aexp? r ,bank]
DPOKE

DPOKE Is similar to POKY., except thnt It allows you to put a two-byte value Into
memory locations aexpl and aexpl +1. aexp2 Is the value, and must be an Integer
vnlue 0 ••R5535, Inclusive. In the above example, the address of the upper left-hand
corner of the screen (this address is stored at locations 88 and 89) Is ehang('d to
$ROOO. To do this using POKEs you would need to do an amazing Amount of math
to get the right number into each of the two bytes,

MOVE

Format:
EXll'Ople:

MOVE aexpJ,nexp2,nexpJ r ,bank]
MOVE $0000,$8000,$400

N<,gnt Ive
(from+len-I) -> (to+len-I)
(from'leo-2) .. > (to'len-2)

- > (to)
- > (to+l)

Caution: be cnreful with this command! MOVE will move any number of bytes from
any address to any oddrpss at assembly lanKuligoe speed. No address checks arp
me de! aexpl Is the starting nddress of the block you want to move, aexp2 Is the
starting address of the place wher.. you want the block moved to, and aexp3 Is the
","gth of the block. The sign of aexp3 (the length) determines the order In which
the bytes are moved, 8.5 follows:

Pos i tlve
(from)
(from+J)

(fr<m+ I en- J) - > (to' I en-I) (frOOl) - > (to)

When the is posi ttv e , the destination hlock CAn overwrite lower part of the
sour-ce b lock , When t he If:'nJ{th Is nPKAtlv£', thp. rlpstinatlon block c an ovorwr lte the
upper- part of the source bl ock,

Note: MOVE cannot automatically move memory be t we ..n banks. To do so you must
first MOVE the block to main memory and then MOVE It to the other bank.

Pege 102 BASIC XI Reference Manual

Arithmetic Functions

Arithmetic Functions

ABS, INT
SON, SQR

The arithmetic functions supported by BASIC XE are ABS, INT, SON, SQR, EXP,
LOG, CLOG, RND, and RANDOM. At the end of t.he chapter you wl1l find a
program that shows these functions In use.

f ABS

Format:
Exemple:

ABS(aexp)
A=ABS(-160)

ABS returns the absolute (postttve) value of aexp.

flNT

Format:
Exemples:

INT(aexp)
1=INT(-3.445)
X=INT(l4.753)

INT returns the greatest Integer less than or equal to aexp, This Is true whether
the expression evaluates to a positive or negative number. Thus, In the first
example, -4 Is assigned to I, and 14 Is assigned to X In the second example. Note:
this function should not be confused with the INT fun"tlon on calculators which
simply truncates all decimal places. For those of you with a math"'matlcal back-
ground, you may think of INT as the" Floor" function.

f SGN

Fnrmat:
Example:

SGN(aexp)
100 X=SGN(-IOO)

SON returns a -I If aexp evaluates to a negative number, a 0 If aexp evaluates to
0, or a 1 Is aexp evaluates to n posItive number.

Format:
Example:

SQR(aexp)
X=SQR(lOO)

SQR returns the square root of aexp. Note: aexp Lust be posItive.

BASIC XE Reference Manual Page 103

EXP, LOG, CLOG
RND, RANDOM

f EXP

Arithmetic Functions

Format:
Example:

F:XP(aexp)
PRIm' EXP(3)

The EXP function returns the value of e (approximately 2. 71A28179), raised to the
power aexp (t.e ., eaexp).

fLOG

format:
EXlrnpl e:

LOG(aexp)
A=LOG(20)

The LOG function returns the natural logarithm (In) of aexp. LOG(O) gives an
error, and LOGO) Is O.

Note: LOG and EXP are complementar-y functions (t.e ., both LOG(EXP(n)) and
EXP(LOG(n» equal n, within the bounds of the accuracy of RASIC XE's math
routInes).

r CLOG
Format:
P.xample:

CLOG(aexp)
A=CLOG(IO)

The CLOG function returns the base JO 1000arithm (IogJO) of aexp. CLOG(O) gives
an error, and CLOG(l) Is o.

f RND

Format:
F:xample:

RND(aexp)
10 X=RND(O)

RND returns A random number greater than or equal to 0, but
less than I. aexp Is a dummy and has no effect on the number returned, but Is re-
quired anyway.

f RANDOM

Fo rma t r
P.xampl ps:

RANnOM(aexpl(,aexp2])
X=RANrOM(99)
Y=RANIlOM(IO,20)

The RA NDOM function r o turna a random Intege-r dependent upon aexpl and aexp2.
When aexpl al orre Is spectffed (as In the first example), the value returned Is
between 0 and aexpl-I, Inclusive. When both aexpl and aexp2 are specified (as In
the second ex amplo) , the vnJuc returned is between aexpJ and aexp2, inclusive.

Page 104 BASIC XB Referenee Manual

Arithmetic Functions An Example Program Using Arithmetic Functions

An Example Program Using Arithmetic Functions

511 Consolo=Sdll':51arl=SI1
511 Op.n 111.41: ..
III To.,=-2.71121111
511 Print :printtart with a vUuo 0' "Ho.t

To.t=lbsCT.st)
55. Print :Print "It. ab.oluto v.luo i. "Host
511 To.t=IntCTo.tJ
571 Print IPrlnt "Ind the Intoglr p.rt of th.t I. "I lost
5.1
1'1 Print ,Print Ich h•••• root of "Host
III T••,=T.stll
III Print :prlnt "".1' of th.t .iv•• "jJ••t
121 print .. [1'........1' th.t nu.....r. h.1f 51.Un"
III , ••t=5gnCl ••,)
641 Print IPrlnt "Th. '5'" 0' that I. ";T••t
651 •••
1.1 T••t=ltnCT••t)
67. Print IPrint "WhOSI ArClln!).nt of "Host; .. is"
.11 1.st=Int[T.5t)
6'1 print .. CIOs•• Corraet rlnult IS "jJ.st;" d.gr••s"
71. Print lprlnt "Th. Sin••nd CDsin. Df "H.st; .. d.gr••• :"
711 Print.. sin. = ";5inn••,)
72. print.. cosin. = "ICD.CT••t)
711 print .. Clook .t the nu.....r 1I0U rered) ..

print Iprint "hit IIlII'lIlDI 'or n••t p.rtll."l
751 Whll. P••kCCDn.ol.TlStirt:EndWhil.
711 Graphics I
771 T••t=Clog[lll)
71. Print "Th. co_n CbU. llJ 10' 0' 1.1 is "H••t
7" T••t=Lo.CT.st)
.11 print :Print "WhiCh has natural log Of ";T••t
III T••t=ExpCT••tJ
12. Print :Print 15 tho base 0' tho natur.1 109•• "
III print.. and. to that pow.. Is "H.st

Print !print" CWhich is pr.ttll darn CIO•• 10 U"
lSI Print IPrint .."it an, k., to continu.... "1... ,.t al.",
171 'rlphlCS I
••• Print :print "1I0W 1.'5 nip .0100 COins. uUng th.t"
I" print.. v.lu••s 1 g....,.r th.n tho i""....
"1 Print" ps.udo-..ando," valu. W wlnt:":Print
'11 Count=1
'2' Whll. AbsCCDuntJ(J
'3' If ••ndo,"CT•• t):Count=Count+1IPrint ." "eads"
'''I for 9=12 To I St.p -'.1:50und •• 11.2.U:1I0.t 9
'58 Els. ICount=Count-l:Print .'tlIIIIIt'
,.. for V=15 To • Sl.p -'.25:Sound ',".12.V:II••t V
nl Endlf
'II EndWhil.
". If Count)I:Prlnt " C ".ads won)n
1••1 E1•• :Prlnt .. TUIS won)n
1.11 Endlf

BASIC IE Reterence Manual Page 105

Space For Your Not'!l

Page 106

Sp8ce For Your Notel

Arlthm etlc Functions

BASIC XI! Reference Manual

Trigonometric Functions

Trlgonometlc Functions

DEG/RAD
COS, SIN, ATN

Discussed In this chapter are the trlgonometlc Cunctlons COS, SIN, and ATN, and
the statem..nts DEG and RAD. Also Included Is a table that shows how to get
other Irascendental trig functions using the ones provided.

Format: DEG
RAD

Th..se two statements allow you 10 specify whether the angles used In the trig
Cunctlons are In DEGrees or RADians. Note: BASIC XE defaults to radians. Also,
all trig functions following a DEG or RAD are perCormE'd using that angle
measurement until the mode Is changed by another RAD or DEG, respectively.

f COS

Format.
Example:

COS(aexp)
100 PRINT COS(O)

COS returns the cosine of aexp. The operation Is done In radians or degrees,
dependent upon whether DEG or RAD has been moat recently used.

CSIN

Format:
Example.

SIN(aexp)
100 X=SIN(O)

ThE' SIN Cunctlon returns the sin .. of aexp. The operation Is done In degrees or
radians, d ..pend..nt upon whether DEG or RAD has been moat recently used.

f ATN

Format.
Example:

ATN(aE'xp)
100 X=ATN(I)

ATN returns the arctangent (T8n- l) oC aexp. TIle operation Is done In degrees or
radians, d ..pend..nt upon whether DEG or RAD has been most recently used.

BASIC XE Reference Manual Page 107

A Table of Derived FunctiolUl

A Table of Derived Functions

Trlgonometrlc Functions

The followlnR table lists some of the trigonometric and hyperbolic functions you
can derive from the arithmetic and trigonometric functions available In BASIC JrE.
The term "x" Is the value on which you wish to perform the derived function, and Is
simply an aexp. Also, you wlll see "CO In some of the functions. This Is a constant
dependent upon whether the angles are measured In degrees or radians. C=90 In
DEGree mode, and C=1.57079633 (pl!2) In RADian mode.

Trigonometric Function
Tangent
Cotangent
Seean t
Cosecant
ArcSine (Sin-I)
ArcCosine (Cos-I)
ArcCotangent (Cot-I)
ArcSecant (Sec-I)
ArcCosecant (Csc- 1)

Hyperbolic Function
SlneH
Cosl neH
TangentH
CotangentH
SecantH
Cosecant"
ArcSlneH (Slnp-l)

(Cos,,-11
ArcTangentH (TanIr)
ArcCotangentH
ArcSecantH (Sed.- I)
ArcCosecantH (CscH- I)

Page 108

Derivation
SIN(x)!COS(x)
COS(x)!SIN(x)
l!COS(x)
I!SIN(x)
ATN(x!SQR(I-xA2))
-ATN(x!SQR(I-xA2))+C
A1'N(x)+C

Oerlvatlon
fEJrPfx)-EXP(-x))!2
(EXP(x)+EXP(-x))!2
-EXP(-x)!(EXP(x)+EXP(-x))*2+1
EXP(-x)!(EJrP(x)-EXP(-x))*2+1
2!(EXP(x)+EXP(-x))
2!(EXP(x)-EXP(-x))
LOO(x+SQR(x"2+1))
LOO(x+SQR(x"2-1))
LOG((I+x)!(I-x))!2
LOG«x+I)!(x-I))!2

LOG(SGN(x)*SQR(x 2+1)+1)!x)

BASIC XB Reference Manual

BASIC XE and Machine Language Subroutlnea

BASIC XE and Machine Language Subroutines

GOSUB
R£TURN

A aubroutlne Is simply a piece ot a program that accomplishes a alngle task. This
means that a program is really juat a bunch ot subroutines atrung together. lIut
what It you want to execute the same subroutine a bunch ot tlmea? You could
type it in every time you want to use It, but that could mean a lot ot boring typing.
The solution Is to use one ot 8 ASIC XE's apeeial aubroutlne calls. They all allow
you to write a subroutine once, and then have it get executed several times in
difterent part8 ot your program.

How you get R subroutine executed (I.e., how you call a aubroutine) dependa upon
the type ot aubroutlne you are ualng. The GOSUB subroutine structure leta you
call a BASIC subroutine by line number, the lISR tunction lets you call a machine
language aubroutlne by Rddreas, and PROCEDURE allows you to cAlI a BASIC
subroutine by name! Since each ot these subroutine at-ructures la different, they
are discussed in depth in separate sections, starting with the eaalest to
understand, GOSUB.

Fonnat: mSUB lineno

GOSUB allows you to 'call' an unnamed subroutine written in BASIC)fE.
Ilneno specitiea the atarting line number of the auhroutlne. A GOSUB aubroutlne
muat end with a RETURN or EXIT (It you use LOCAL avara within the subroutine)
so that program executl...n may continue with the statement atter the GOSUB.

To prevent accidental triggering ot a subroutine whose code tollowa the main
program, place an END statement between the end ot the program and the atart of
the subroutine.

Caution: Like the FOR and WHILE statements, GOSUB uses the program atack to
save its return l lneno, If the subroutine Is not allowed to complete nonnally (e.g.,
you exit via a GOTO) the return Uneno must be POPped ott the stRek or It wl1\
cause an .. rror. Also, It you use LOCA"i:9vars within a GOSUB subroutine and do
not extt via EXIT, you must POP the previous avar value. ott the stack yourselt.

RETURN (RET.)

Fonnat: Iineno RETURN

RETURN Is used to exit a GOSUB subroutine that does not contain LOCAL avars.
It the subroutine does use LOCAL, you must end It with an EXIT.

When you RETUR N trom a GOSUB, program execution continues at the atatement
after the GOSUB call.

BASIC IB Reterence Manual Page 109

IntroducIng PROCEDURE and
Ita Related Statements

nASIC XE and Machine Language Subroutines

Inl,roduclng PROCEDURE and Its Related Statements

BeCore descrlblnl: the Indlvldunl statements used to create and call named
subroutines, we present an Introduction to them because they are Interdependent,
and we felt that having a small but effective demonstration or their use would
mlk@ It ml@r toundmtond thl! lAter ddlnltlon8.
If you have programmed at all in any dialect or RASIC, you have used the
GOSUB ... RETUR N construction. For example, you might aee a program like the
following (This program Is for dpmonstratlon purposes only, but It Is a ralrly
amusing little thing to spring on an unsuspecting frlendl:

21 Valu.=111
II Min=lIIKax='II'osvb III
41 R.sul U=IIU..
51 "in=II*Valu.:"ax='l*Valu.I'osub III
'I R.SUJt2=lIu ..
71 If R.sultZ)Valu.".sultl Th.n 'I
.1 Print "You app.ar to b. cons.r"ati"."IEnd
,. print "You 5.... r.adY to take risks"IEnd
III R•• "'h. 5ubroutinp"
111 print :Print "PUas, liv. 1M a nu.er b.t",en"
121 Print Min;" .ntl
131 Input ••, ine)uSiv.) ",MUM
141 If lIu'>="in And lIu.<=Max Th.n R.turn
151 In".rs. sPrint "Can't YOU r.ad? That nu••r is''
1'1 Print" out of the ran,. I ,a". you. "llIorMI
171 'oto III

In a sm all program like this one, the GOSUB may be just fine. As programs get
larger, though, lines like GOSUB 3250 become less and less meaningful. Atarl
RASIC (and thus RASIC XF.) allows you to do something like this:

JI l.t ,.tlnran••=JII
21 Valu.=111
II Min=lll"ax='II'oSUh ,.tinran••

fly g-Iving a name to subroutlne, we can make our code more readable , A
d lsndvan t ag e to this method Is that RASIC XF. On "ammon with Aterl
allows only 128 unique variable names. Using a variable name as a subroutine
name diminishes t he pool or available names. This, th"n, Is the rlt'st advantagp. or
BASIC XE's proc we use constant to name them , so we nr.ed
waste no variable names! Look a I the listing opposite -

Page 110 BASIC XII: Reference Manual

RASIC XE and Machine Langunge Subroutines Introducing PROCEDUR E and
its Related Statements

21 T...=lI.
I' C.II ..,.t In '.ng." Usinl 11.'1 To ••sul11
•• CIII ..,.t In 'ang." Usinl l ..T.... ' ••T... To R.sult2
7. If •••ult2(T.......sultllTV...S=..c.ns.r".ti"...I' Us. ITI/p.S="a risk t.k.r"
;: Using "You to b. lI;XKXXXKr.xXlIX/ TIIP.Slfnd
1•• proc.dur...,.t In .anl." U.inl Min.Hax
11. L.cal T."ll...=l••'.
12. Whil. T• ..,(Min or T...>NaX
111 If T...()l••,.,Prlnt
14. Iny.rs. ,print "Can't I/OU r ••d? That nur ill"
1.. Print.. .ut.f the r.nl. I g.y. I/ltu. "lIlorul
11. fndl f
171 Print IFrint ..Pl •••• Ii".... I nur b.t.,..n"
1.. Print Min)" .nd "INaX)
1" Input ". Inclusl".> ". T...
211 fn..... II.
211 fxit U ..

Contused? Not too surprising. Let'. take a look at the new lines a step at a time.
First.ln line 30, note the CALL to the PROCF.DURE named "Get In Range". See
how clear accessing this subroutine Is, since we can use any characters we like In
the name string. That's pretty easy. right?

Rut what about the USING that pppears in both the PROCEDURE and
CALL statements? In line 30, we are 'using' values ot 10 and 90. But in line 100,
we are 'using' the variables Min and Max. Isn't that neat? We didn't have to
asaign the values 10 and 90 to Min and Max before we called thc subroutine:
CALL does the work tor us! This is called "passlng perameters' to a procedure.

It gets better. Notice the EXIT statement of line 210. It allows the procedure to
return a value (the contents ot Temp) to the CALL. The value I. placed into the
variable that tallows the TO in the CALI. statement [Resu1t1, In this case). That's
reasonable, right? It you can 'pass' par-emeter values, you should be able to
'return' parameter values. But doesn't uslng the variable Temp In th" procedure
subeoutfne wre"k havoc on its Iater usn In the main program (e.g., In line 50)?

Ah, but there's ilne 1l0, with Its deceptively simple-looking LOCAL Temp state-
ment. By using It w" have <:rested a 'private' copy ot Temp tor use in the
procedure. Any changes to Temp between the LOCAL and the EXIT won't aUect
Its value in the rest ot the program, Wow!

The example we Just work"d through uses sll ot th" new procedure-oriented
statempnts: PROCEDURE, CALL, and EXlT. By no means. though, did we use all
of the capabilities at these statements.

BASIC XII Reference Manual Page 111

PROCEDURE BA3)(": X E and TIlnchinc Language Subroutines

Fo rmn t r
f., IJ!T1pl e s s

PRrCFllliRf. pnlY-',., [USING rvarl r ,rvar2 ••• 11
ll100 PROCEnFRf: "Ca l ou La t e Pay" l>SING Hours,Rat,e,lTaxtable()

PP.ocr.nlnf. "Prlnt TIlsg" USiNr: !Msg$
4,HO pp:y;nJ\.11E "Clui t"

Note: It TV8.r los An rnvar , sv ar , or sav ar , it must he preceded by an exclamation
point OJ. rvar In the glossary fcr more inf':;:-

The PROCEDUR E statement is the nucleus around whleh named subroutines tn
BASiC Xr. are huilt. It. nefines th.. beginning of A subroutine which will be
terminAted by EXIT, Ann "x"cutcd vfa CALL.

pname is the name of the PROCEDURE. arid Is a valid string constant. In
the ex arnpl es above you e an see P19.t sp1l(:p's h1V(' been used in the pnames to add
el ar l t y to the As E.'. mat ter of r,ood progrnmmtng style, you use names
thAt d"scrlbe what the PROC.:DIIRE does. shortening them only If you b<'gln to
run out ot memory,

Wh"n you CALL a PROCEDURE, the return tineno I. pushed onto the RASIC XE
stack so thnt expcutlon c an contlnuc with st n rem ent following the CALL when
the PROCEDURE Is dono ,

If you poss pflra:net"r" to the PROCEDtTRE (via USING), CALL will push the
current 'VAlues' of rvar t t rvar!tu. onto the stack, then put the pexpJ,
pexp2.... 'vatuos' ('''"' CAI.L) into the r"""lvlr'lr varIAhl"., And finally pass control
tn thO' PROC EDUR E. This Is u strc,;ghtrorwArd prooess whon the rvars are
nvnrs , bec ause thp 'values' pushod onto th... stack are simply nwnerlc constants.
Tn following so t of etutements as au ex are

11 JUnk=21
21 CIII "l.s1" Usin9 12*17
31 , .. in't Junk
.1 fnd
71 ' ..oc.du... "I.st" Using JUnk
II 'rin1 JUnk
'I

In t hi s ex am pl e , when t ho PROCEOllRE 118TrN.1 "Te!lt" rt liN' ';'0 Is C.".Lpd, t he
o ur r en t v e lue or t he rver Junk f?C, ns Bssignro fn line 10) Is pushe-d on H',I> stack,
The-n the v ah.o of the pe x p 02·17, or 20·t) is tnt o Junk. Any subsr-quen t
rder"nc,," to Junk wlthtn t he P/lOCEOURE will fln'l that f t contntns this n"w
vnt uo • rnr example, t he PRINT on IInf' JHI will dhphty the vatuo 40Ft. the
rXJT on line 90 Is PXf·" •.IU-d, it wt11 rr-st o re Junk to Its. prior value or 20, thus the
PRINT on lin" will cttspluy 0,,, volue 20.

All t ha t this means Is that USING (when usnd In conjunction with CAI.L And
PROCEDURE) does An irn"lIrlt LOCAL. 'I'h e pur-pose of tills rntght not be
pprfeptly ol cnr , Thanks to the lm pl io l t LOeA L, WP. CRn r euse the var-tabte name
Junk in our pr-oc edure Ami so conserve on names (remember , we are allowed only
12P.) without worrying about. ehanv,lng it within the procedure. The second
advRntAge is more difficult to see from this simplistic ox am pler we are able to PAss
values Into the procedure without knowing what v ar-Ieb le names are used wlt.hln It.

Page 112 BASIC XII Reference Manual

BASIC XE and Machine Language Subroutines PROCEDURE

The example In the previous section shows this feature to some advantage, an"
demonstrates how the resultant code can be both smaller and more readable.

When the rvars are not avars (Le , they're mvars, sv at-a, or savars}, the m.. thodology
Is the same, but the results are more complex, The difficulty lies In understanding
just what the 'value' that gets pushed on th.. stack Is. A journey Inside BASIC XF.
Is required to answer this question. In BASIC XE thevalue of.!!!l vartable Is the
contents of Its entry In the Variable Value Table. This table reserves eight (8)
bytes per variable - a nag byte, the variable's number (0 .. 127), and six bytes of
'information' •

For simple avara, tb.. 'Information' Is the numerIc value of the varIable. For svars,
savara, and mvars, the nag byte IndIcates thet the 'Information' Is the address and
characterIstics of the actual dlltll. For ..xample, an svar needs Information about
Its address,lts DIM length, and Its current LEN Iong th, The strIng data Itself Is
located at the glv"n address. The 'Information' for both mvars and savors consists
of an address and two DIMensions.

when CALL pushes the 'value' of 8 rver that's 8 svar , savar , or mvar on the
stack, It Is pushing this special Information. SImilarly, when CA LL copies a pexp
that's a svar , savor, or mvar Into one of these types of rvars, It Is not copying the
actual string or array. Instead,lt Is cl'pylng the special InformatiOn. This Is the
reason that rvar an" pexp r equtre the! prefix when they refer to these types of
var-tables, Consider this sequencer
11 fun.="5lfi ...inl is fun."IHS=".ilh1?"
21 C.II ", fun" Usinl Ifun'
JI Prin1 fun••H'
41 En'
51 "Th. Proce.ur."
.1 Proc••ur. ", run" UUnl IH'
71 Prin1 fun.,H'
•• XSC1,5J="L.Ulh"
" ExU
Hopefully, you "ill actlllllly try this little program. If so, you will find that line 70
shows that, as we hllv" described above, the 'value' of Fun, has been copied Into
X•• The PRINT In line 70 will display
5lfii •• is fun. 5lfiin. is fun,

The relll surprise comes wh.. n the PRINT In line 30 Is executed (following the
succesarut EXIT In line 90), The resultant dlspilly Is
LaUthinl is fun. lith1?

Do you see why? If tho 'value' of Fun. Is copied to X,, th.. n the address of
Fun. Is now In X"s entry In th" Vllrlahle Value Tsblp. Thus, any change we make
to X$ affects affects the contents of Fun,. Complicated, yes?

A sImilar action place takes place when a sav ar or mvar Is passed as a param .. ter -
changes to the rvar within the PROCEDURE will affpct the pexp varfable In the
CALL.

TechnIcal Note: In computer lingo, nvara passed to a procedure vIa a 'call by
value', while the other types of vartablee are passed via a 'call by reference'.

BASIC XE Reference Manual Page 113

IIASIC XF. and Machine Language Subroutines Notes and Warnings
Regarding PROCEDURE

Notes and Warnings Regarding PROCEDURE

Note: IIASle Xf Insists that paired pexps and rvars be of the same type. For
example, the fo llowlng wJl1 cause error 24 ("USIN G Type Pt4lsmatch"l:
••• Call "Oh lo!" Usinl 33
I
72. Proc.dur. "Oh 10!" Usinl lA$

Note: BASIC XF. does not make sure that you have the same number of rvars as
pexps In a CALL to a PROCEDRE. It a CALL does pass too many pexps, the extra
ones are ll(nored. If it passes too few, a value of zero Is assigned to all rematnlng
rvars parameters. This, In turn, can cause a type mismatch, since only avars may
receive a numeric valu... F.xceptlon: If the CA LL passes no parameters, IIASIC XE
do.. s nothIng at all to the parameter pa ss lng area. This ison purpose, sInce passIng
parameters takes time. Thus, even a PROCEDURE expecting only numeric
perarn eterf s) may report a mismatch error, since It attempts to obtain those
parameters from the miscellaneous dnta left In the parameter arpn. Generally, we
recommend passing the corr-ec t number ot parAmeters unless you have 8 specit'ic
purpose which can use the "default" feAture to 0 real advantage.

Note: you must b.. careful when chanl(lng the value of a avar passed as a
pnrameter. Recall that th.. I ..ngth of a svar Is found In Its Variable Value Tahle
entry, and that the entry is copied intact to the PROCEDURE's rvar, It you then
chAnl(e the length of the rvar string within the procedure, It wJl1 Indeed change
the rvar's ll'ngth In the tabl e, Ho wevor-, when you EXIT, the rvar entry Is
not automatlcally copied back to the pexp used In the CALL! This can producesam e bIzarre results. To d ..monstrnte - modify line 80 of the last example program
to read
•• X$:"laulh":Print xS
Not surprisingly, the n ..w PRINT In line 80 shows us that the contents of X$ are
simply "Laugh". Ho wcv er, look at the display rcsultlng from line 30:
laulhinl is fun. Rilht?
1)0 you see the problem? Changlog X$ In line 80 changed the contents of Fun$,
hut It did not change the length of Fun$. Presumahly, this eould he a fellture
under thr.Mght «Ircumstancea, hut there are stranger consequences possible. For
ex arn plr-, try changing line AO to road
ee X$:'IMMM"
Now line 30's PRINT will display
XXXMMinl is fun. Rilht?
which Is almost surely not we wanted.

One solution to t hl s af tus tton is Almply to avoid chRng-lng a passed string within ,.
pr ocedure block. Thf s m a y not be satfsfactory, t hough, so we have providpd
ano thr-r meche nlsrn which you CAn use to circumvent thp. problem. Change lines 20
anrl 90 In the originAl pr-og r-am to read
28 CUI t fun" Using !funS To !funS
,. fXi t IX$

Using the TO gUllrnntee. that the complete new "value" of X$ will be copied bnek
to Fun$. On this same topic, you may he relieved to know that this difficulty with
If>ngth does not exist wHh mvars or savars,

Page 114 BASIC XI: Reference Manual

BASIC XE and Machine Language Subroutines Notes and Warnings
Regarding PROCEDURE

Warning: one way to get In real trouble with either strings or arrays Is to pass one
back (via EXIT) which was not passed In (via CALL). F.xamlne the following
proKram excerpt: --
111 Call "Oops" To IA'
111 Call "OOps" To , ••
lZI print ••••• :End
3•• Procedure "Oops"
III Input "TlIP. so_thing) ".Un.'
UI Exit lLiUS

If you type In and RUN this progeam, giving different responses when you are
prompted, yOIl will be surprised at the results of the PRINT of line 120: AS andB' will be Identical (up to the I<>ngth of the shorter), taking on the value of the
second INPUT. It you recall our discussion of what actually gets passed when a
string or array Is Involved, this seemingly bizarre result can be explained.

When Lines g"ts passed back, what Is actually transferred Is Its Variable Value
Table entry, first to A" and then to BS. Rut the table entry consists (among other
things) of LINE"s a<lelr"ss. Thus you end up with all three variables pointing to
the same piece of memory!

The proper solution Is to pass" string both In via USING and back out via EXIT.
For savars and mvars, you need only pass the value In, slnc"---;;;'ythlng the
PROCEDURE does these varlnble types Is properly reerected In the original
variable.

The only way you can get In trouble with "rraY" Is It you pass an unDIMensioned
array to a procedure which then DIMensions fl. IInless you poss back the "value"
via EXIT (almUar to the fix for strings just given above), the space DIMensioned
within the procedure Is lost, since no variable's entry wlll refer to It after the
EXIT Is executed.

Warning: PROCEDURE must be the fh'st statement on allne. CALL c annot rind a
PROCEDURE If Is not at the beginning of a ltne, and wOiiii"roUs (and
woefully unpeedfc table) things can happen If you vlolnte this rille. you
should never allow a program to "f"l1 through" to a PROCEDURE. Always make
sure that the program Immediately prec edlng each PROCEDURE finishes with a
GOTO, STOP, END, RETURN, or EXIT. We recommend "rouplng all procedures at
one spot In your program, preceded by an END statement.

BASIC XE Reference Manual Page 115

EXIT

Format:
Ex£IllPI e s r

RASIC XE and Machine Language Subroutines

EXIT

EXIT [pexpi [,pexp2 ••• JJ
EXIT IO·Yaxvalue

799 EXIT Flag,!Nmnes$
EXIT! [nverse() ,Rows ,Colt",ns

835 EXIT

Note: if pexp Is an mvar , sv ar , or savar , It must be preceded by lin exclem atlon
point C!l. S"e pexp in the glossary for more more Info.

If you have been reading this manual front to bnck you have encountered several
examples of the statement EXIT by now. It you have not, we refer you to the
three previous sf"ctlons for some Il lustrattve examples.

EXIT perfonns the following three functions:
1) If there are any variables on the stack (i.e., If you passed parameters or used

LOCAL) EXIT restores them to their proper places in the Variable Value TAble.
2) It there are any pexps after the EXIT, It places them Into the rvars following

the TO In the CALL statement.
3) EXIT checks to see whether the current subroutine was invoked via CALL or

GOSUB. If it was a GOSUB, EXIT stmulates the action of a RETUR N.

Warning: no error will result If an EXIT statement tries to pass pexps back to a
GOSUB. Instend, they Are simply Ignored. Similarly, It you pass back too many
pexps to a CALL, the excess ones will be Ignored. This design allows a single
PROCEDURE to serv.. more than one function, returning more values to some
CALLers than to others. Remember, though, that all rvars expected by the
TO portion of a CA LL statement mus t be matched hy typ" hy the pexps of EXIT.

!'Iarnlng: b eoause POP is smart enough to pop var table 'values' off the stack, you
can leave subroutines with LOCAL avars and/or pnrameters without using EXIT.
You must, however, make sure that you POP all variables off the stack, as well as
POPping the return l ineno, -

Page 116 BASIC XE Reference Manual

BASIC XE and :IIachlne Language Subroutfnes CALL

Fonnat:
EXa1lples:

CALL

CALI. cnene [USING pexpt I ,pexp2 .••]) [TO r var] ,rvar •••))
10 CALL "Test"
720 CALL "Totals" URING IValues() TO Sum
800 CALL "Get N\llI" TO Ntrnber
100 CALI. ProcS USINO 7, IA$ TO Result

Note: I! rvar or pexp Is sn mvar, svar , or savor, It must be preceded by an
exclamation point (0. See rvar and pexp In the ginssary to;more more Into.

The CALL statement has been both dlscuesed and demonstrated esrller In this
chapter. In this section, then, we will not dwell on such things as the mechanIcs ot
parameter passing. Rather we will discuss the sub ttettes ot the CALL statement
Itselt.

First, unlike a PROCEDURE statement, the narne specltled by a CALL may be a
svar Instead ot being a string constan t (see the last ot the above example lines).
However, you have no oth"r chotce ot tonnat than thnt shown. Y"u may use
n",lther a substring nor an element ola string "rray as A CALLed name. This I. not

restricTion, though, since the great bulk of your CALLs will probably
be made with string constants. For those rare occasions when you wish to choose
one ot several PROCEDTJR Es based on the value ot some Index, may we suggest a
program tonnat similar to the tollowlng:

3. Input "51v. M .n Ind.x) ",Ind.x
......$:Pr.c$CInd.xl)IC $

Note: the name that you CALL with (whether constant or variable) must match
eXActly that glv,," In a PROCEDURE statement. All characters are considered In
"-he match, with upper case, lower cnse , and Inverse video nit distinct.

Caution: we r"mlnd you of the possible problem associated with using" svar as a
pexp: It Its length is modified In th" procedure, the change Is not renected In the
svar unless TO Is used. Similarly, any array that'. not DIM"nslon"" at the time of
the CALL should receive th" same treatment.

Technical Note. the number of levels you may nest CALLs Isllmlted only by the
amount ot FREe memory I",ft lor stack lise. Like GOSUB and "RILE, CALL uses
four (4) bytes ot stnck space, and each paramerer passed occupies 12 bytes.

Notel CALLs are slow In comparison to GOSUB Uneno In FAST mode. Powev.,r,
when compsred to nom;-al GOSUBs In slow mode, they mr,y actually be Just a bit
faster If they don't pass parameters. Parameter passing can, Ind"Pd, slow things
down remerkablv, Rut, when you compare It to the method of doing several assign-
menta before a GOSUB, follow"d by one or more afterward, It rnay actUAlly save
time In some situations.

BASIC IE Reference Manual Pop;e 117

USR

Fo rma t e
F.xomple:

USR(npxpll •.",xp2 ••• J)
100 ("'lDR ?)

B "'oiC XF. and Iota"h!n .. Language Subroutines

C U3R

The USR runcuon returns the result of n subroutine.
Rpxpl must be an Integ er , and is used I1S tilt" address (lC the machIne language
rcut lne to be p<'rCc.rmpd. The inpet arguments sexp2, acxp3.... are optional. and

as to the ll.lnguflg'f? subroutine. These oexps must be
b"tween 0 and end wlll be rounded to the nearest positive lnt.'r,er IC they
are Irae tlonal , Thel' are then pushed on the hardwut e stack In the rpverse oC the
(Jrder given. so th" machIne language program ma y then pull them in proper
Corward order•. a one byt e count oC parameters is pushed onto the
stack last. and must be po ppe d hy the USR routine. This may he ch/lnged using the
SET 8,aexp. --

"'1"". Ir all arguments arc pror,prly pulled Crom the stack, then the USR routine
may re tur n to BASIC XE simply by e eecuttng an RTS Instruction. FInally. the
routine may return a single I f,-bit vnlue to BASIC XF. (as the "value" oC the
Cunetion) by pl ae lng A ",'suit in and FRO+I ($D4 and $D6) before returning.

Note, se" ADR tr y(>t1r ",,,,,hl"e Innguoge subroutine is in a strIng, 8S this mi!:ht he
problematic If you ore Ir. EXTENDed IT"Yle.

The following ex arnplu uses r. USR routlne to ASf. a number (the argument to the
USR routtne) and then r-e-tur n t hn t value to BASIC XE.

RASIC XF. sr atr-mr-nt r

.asl=U.rl$'••••,

USR routine "t $6ftO:

u. PI.A ;'.1 • of par.....t.rsu. CNP IlJ ;If nat 1 EMIT
128 II11E neu. PLII JM!;B
H' TIIN ;!"v. it
15. PI.II ;L5.n. 115L A ;A!ll l58
171 5TII $04 ;5 • .,. it
1811 '''II ;Gttt M51
.,1 ROt. II ;ROL it 1. ••t tA"rl/
288 5TIl Us /5a". it
2" fllO RU

Page 118 BAsrc XE Reference Manual

Appendix A

NORMAL Video

ATAscn Characters and Codes
NORMAL Video

8 S" •
I S81 "}
4 ..4 of

S"6 ..6
7 ..7
8 ..8
9 ..9
18 S8A
II S88 ,
12 sec
13 S80
14 seEn:
17 SII r
18 SI2
19 SI3 +
28 SI4 •

r
I

25 S19 \
26 SIA
27 SIB
2B SIC t
29 $10 •
38 SI£ ..
31 SIF ..

sPTCf
34 $22 •
35 S23 •
36 $24 S
37 S25 Y.,
48 $28 (
41 $29)
42 S2A •
43 $28 ..=; !

;
48 13. •
49 $31 I
58 $32 2
51 S33 3
52 S34 4
53 S35 5
54 S36 6
55 $37 7
56 .. 38 8
57 .. 39 9
58 $3A I
59 S3B I
68 .. 3C <
61 .30 ..
62 S3E >
63 S3F ?

g=t A
CTRL 8
CTRL C
CTRL 0
CTRL £
CTRL F
CTRL B
CTRL H
CTRL I
CTRL J
CTRL I<
CTRL L
CTRL N
CTRL N
CTRL 0
CTRL P
CTRL Q
CTRL R
CTRL S
CTRL T
CTRL U
CTRL V
CTRL W
CTRL X
CTRL Y
CTRL Z
ESC ESC
ESC CTRL t
ESC CTRL •
ESC CTRL ..
ESC CTRL ..
SPACE BAR
SHIFT !
SHIFT·
SHIFT'
SHIFT ..
SHI FT Y.
SHIFT &
SHIFT '
SHIFT (
SHIFT)•+

i
8
I
2
3
4
5
6
7
8
9
SHIFT I

l..
)
SHIFT?

64
65
66
67
68
69
7.
71
72
73
74
75
76
77
78
79
88
81
82
83
84
85
86
87
88
89
9.
91
92
93
94
95
96
97
98
99
188
181
182
183
184
185
186
187
188
189
118
III
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127

S48
.. 41
$42
S43
.. 44
.. 45
S4.s
..47
$48
.. 49
S4A
.. 48
.. 4C
.. 40
.. 4E
.4F
.58
$51
$52
$53
$54
$55
$56
$57
$58
$59
$58
$5C
.. 50
$:;E
$5F
$68
S61
$62
$63
.. 64
$65
.. 66
167
$68
.. 69..6A
$68
..6C
$60
.. 6£
.. 6F
.. 78
.. 71
$72
.. 73
$74
.75
$76
.. 77
$78
..79
S7A
S78
S7C
S70
S7E
S7F

a
A
8
Co
E
F
G
H
I
J
I<
L
N
No
P
Q
R
S
T
U
V
W
X
Y
Z
I
\
1
••b
c
d•f
I

1
II
n
o
P
q
r
s
t
u
y

'"x
y
z•I
II
4•

SHIFT a
A
B
Co
E
F
G
H
I
J
I<
L
N
No
P
Q
R
S
T
U
V
Wx
Y
Z
SHIFT I
SHIFT \
SHIFT)
SHIFT A
SHIFT _
CTRL•b
c
d•f
I

1
II
n
o
p
q
r
s
t
u
y

'"x
'Iz

ESC SHIFT CLEAR
ESC 81< SP
ESC TAB

BASIC IE Reference Manual Page A-I

ATASCII Characters and Codes Appendix A
INVERSE Video

INVERSE Video

£.!.i lli K.ystroK. £.!.i lli K.ystroK.
128 t88 j fm A 1S'2 tC8 IINV SHIFT a12S' t81 1S'3 tCI INV A138 tS2 ltN CTRL B IS'4 tl:.2 INV B131 $83 H IN'J CTRL C IS'S $C3 INV C132 $84 INV CTRL 0 196 $C4 liN 0133 $85 INV CTRL E 197 $C5 INV E134 $86 INV CTRL F 198 $C6 INV F135 $87 INV CTRL G 199 $C7 INV G136 $88 INV CTRL H 288 $e8 INV H137 $8S' INV CTRL I 281 $C9 I It....' I138 $eA INV CTRL J 282 $CA INV J139 tSB INV CTRL k 283 $CB II'N K148 $SC INV CTRL L 284 fCC INV L141 tSD I INV CTRL H 285 $CD INV H142 $SE INV CTRL N 286 $CE INV N143 tSF i INV CTRL 0 287 $CF INV 0144 $98 INV CTRL P 288 $08 INV P145 t91 INV CTRL Q 289 $01 INV Q146 $92 INV CTRL R 218 t02 INV R147 $93 n INV CTRL S 211 $03 INV S148 $94 II#-' CTRL T 212 $04 INV T149 $95 IN'J CTRL U 213 $05 INV U158 $96 I INV CTRL V 214 $06 IN'JV151 $97 INV CTRL W 215 $07 INV W152 $9S II IN'J CTRL X 216 $08 INV X153 t99 i IN'J CTRL Y 217 $09 INV Y154 $9A

EHL
INV CTRL Z 21S $DA INV Z155 $9B RETURN 219 $OB INV SHIFT [156 t9C ESC SHIFT DELETE 228 $DC INV SHIFT \157 t9D ESC SHIFT INSERT 221 $00 INV SHIFT)158 $9E ESC CTRL TAB 222 $OE INV SHIFT A159 t9F I ESC SHIFT TAB 223 tOF INV SHIFT _168 tA8 It"'" SPACE BAR 224 tE8 II'N CTRL161 tAl INV SHIFT ' 225 tEl ItN a162 tA2 INV SHIFT· 226 tE2 INV b163 tA3 B ItN SHI FT • 227 tE3 INV c164 tA4 INV SHIFT t 228 $E4 mJ d165 tA5 II INV SHIFT x 229 US INV •166 tA6 I ItN SHI FT & 238 $E6 ItN f167 tA7 INV SHIFT ' 231 tE7168 tA8 INV SHIFT (232 tEB169 tA9 INV SHIFT) 233 tE9 1t\'J i178 fAA ;;: ItN * 234 tEA INV j171 tAB I INV + 235 tEB liN k172 tAC ItN , 2:)6 tEC IN'J ,

173 tAD INV - 237 tED IN'Jm174 'AE INV • 238 'EE INV n175 tAF

I
ItN I 239 tEF INV 0176 .B8 INV 8 248 $F8 ItN P177 tBl INV I 241 tFI ItIJ q178 $B2 IN'J 2 242 $F2 INV r179 .8:) INV 3 243 SF3 ItN s188 $B4 ItN 4 244 $F4 ItN t181 t85 INV 5 245 $F5 I INV u182 $B6 INV 6 246 tF6 IN'J u183 $B7 INV 7 247 tF7 INV '"IB4 tB8 INV 8 248 SFa INV x18S tB9 I INV 9 249 $F9 INV r186 tBA INV SHIFT 258 tFA I INV z187 t88 251 tFB188 tBC 252 tFC189 tBO INV = 253 tFO INV ESC CTAL 2198 t8E INV) 254 tFE ESC CTRL DELETE191 tBF INV SHIFT ? 255 tFF ESC CTRL INSERT

PaKe A-2 BASIC IE Reference Manual

Appendix B

BASIC XE Memory Map

BASIC XE Memory Map
*0000 - LOMEM

8elow you will t1nd a table containing the low memory locations used by
XE. In the descriptions you will t1nd the abbreviations 'AtB' and 'BXE'.

They stand for' Atarl llASIC' and '8ASIC XE', respectively.

Most of the... locations are documented only because they are used to delimit
areas In the m..mory maps on the following pages. The only locations that might be
ofusetoyouareLOMEM,STOPLN,ER8l1AV,and PTA8W. These, however, nre
associated with BASIC XF. commands as Collows, so you need never use PEEK or
POKE.

LO\lEM
STOPLN
ERRSAV
PTA8W

LOMEM
ERR(I)
ER8(0)

SET l,aexp

Note. unless otherwls.. speclCled, all zero page locations $80 - $FF are used by
BASIC XE.

Locatlon(s)
$F.-$F
S20-UF
$43-$49
$80"Rl
$82, tR3
'84,$R5
$R6, $R7
'88, $R9
'RA, S811
'RC, $RD

$RF
$90,$91
$BA,$88

$(;9
$C8-$(l1
$(l4-'D9
$F.0-$F.5
$480-$57F

$6RO-'6FF

$700-LOMD!

Lahel
APPMiiT
ZIOCD
FMSZPG
L(J\fD!
VNTP
VNTO
VVTP
S1VfAll
S'rnCUR
STARP
RUNST!<
MrnTOP
STOPLN
F.RRSAV
PTA8W

FRO
FRI

Usag..
System pointer to fr ..e memory.
Temporary storage for Floating Point routines.
Temporary storage for Floating Point routines.
Low memory po Int.er.
Variable name table pointer.
Pointer to the end oC variable name table plus one.
Variable value table pointer.
Stntement table pointer.
Current statement pointer.
mYnr, sVAr, Rnd S8var value table pointer.
Runtime s tack po In t e r ,
High m<mory pointer.
Line number at which the program stopped.
The number oC the most recent error.
Number or columns between tab stops.
Unused by IlXE!!
Floating point register O.
Floating point register I.
Used hy RXE for var lous purposes. Caution. scme
AlR prog r ems use this area during RUN. BXE pro-
grams that use AtR comm6nds can do this also,
but those thnt take advantage of the new cOTlllllnds
may not use this space.
Normally unused by 8XE, but INPtTI' or ENTER Cran an
extcrnal device can wipe It out.
Unused by IlXE!! We suggest that you use this area
Cor your USR routines.
DOS and any other device handl"rs (R:, etc.) reside
here. The LOMEM statoment can change the size of
this space.

BASIC IE Reference Manual Page 8-1

BASIC XE Memory Map
LowMllmory - Stllnderd

Low Memory - Standard

Appendix B

The dIagrams on this and the facIng page show how XE uses memory
between LOM EM and the start of cartrIdge memory 000). The diagram on this
page shows how memory Is used if you do not use the EXTEND statement, and the
one opposite shows the memory conligurat!on In EXTENDed mode.

IW1
$A888

GR. RAM-----------PHG. RAM-----------
$9888 ,1
S8888 1
APPHHI -----------

ruSlC XE
""tack------------

$7888
mv.,.,
svar,
..avar.

SlARP
S6888

Your

BASIC XE

S4888

Program

S3888

STt1lAB -----------
varVVlP --_.--------

Namts
IAfTP ----------- LlJ1EM

Page 1l-2 BASIC XE Reference Manual

Appendix B

Low M"mory - EXT£NDNI

BASIC XE Memory Map
Low Memory - EXTENDed

SA...

$988.

$B88.

$7.88

$688.

APPl1HI
$:5e..

$4e88

$3.88
STARP
WTP
\MrP
LlJ1EH

GR. AAl1-----------PHG. AAl1-----------..

Ex RAM In a 13.XE
.. ..

FRE (e)

...----------- FRE(I)

Your

ruS\C XE MSIC XE

II"tack------------ Prograll

",,,ar, -syar. Bank l) Bank I Bank 2 Bank 3
s."'
Spac.

------------liar Valu.s
liar Nalus
BXE Bufhr • $388 byt. Buff.,. •

BASIC XE Reference Manual Page

BASIC XE Memory Map
High Memory

TIl(' (In this sho ws the memory rOhf:rllrotlon frorn th£' stnrt of
c,qrtridl'(" -nernorv to SFFFF (the t'nd of A<1drp,;s space). Those ar"." lAb,'111'd
'r M,le XF. or!' used hy BARIC Xf: when you have booted using the
disk extensions.

RCtl

fFue

t08U

tC888

tA808

Page B-4

Alari
Optrat ing "y

Ahri

-Staodard Ch rachr S.h
Atari', BASIC XE

Pt.

G1IA, POKE)'. and PIA

]nhrnation 1 Chu'. S.t
Alar;

BASIC XE
OpPrI,ting

RAl'I
Snhlll

Unusabl.

Alar'i eMlIC XE BASIC XE
BASIC Car t r-i dg.

BASIC XE Reference Manual

Appendix C CompatabUlty with Atart BASIC

CompatabUity with Atart BASIC

Generally, BASIC XE Is totally compatable with Atarl BASIC. Virtually all
programs you have written In Atnri RASIC will execute properly under RASIC XE.
However, there are a few subtle dttferences between the two BASICs, and some of
these can a frect whether n progrAm wll1 load And run or not. This appendix
peesents a list of known dlU"rences, but we can't guarantee that It covers all the
dttferenees.

Variable Names

When you SAVE or CSAVE a prog rarn in Atnrt BASIC, and then LOAD or CLOAD It
Into BASIC XE, you will never encounter a confilct In variable name usege, It,
however, you MST a program from Atarl BASIC, and try to ENTER It Into
BASIC XE. you might discover that RASIC XE will not accept some lines that you
know are IPgaiin Atarl RASIC.

The reason, of course, is thst BASIC XE has a much larger list of commands than
does Atarl RASIC, and In nelthe r BASIC CAn you start a variable name with a
command name unless you precP.de It with LET. To Illustrate how this can create A
problem, consider this program line thot's valid In Atarl RASIC:

1.. IU"t:1=7
Because NUM Is a RASIC XE statement the above line wll1look like1.. IU.. ..r=7
to BASIC XE. Since your program probobly doesn't have a variable named Ber, the
expression Be!""? will evaluate to zero, thus making the original statement turn
Into
111 Iu.. I
which Is certainly what you Int.. nded!

In most cases variable name confilcts will result In syntax errors, but In this partl-
euler case (anel a few others) the r ..sult appears valid to IlABIC XF., thus creating
possibly elisasterous consequences.

IIow can you detect and fix such problems? The e asiest way Is to examine a
RASII:: XE LISTing of the program, anel, thanks to RASIC XE's program fonnatter,
the dlscrepandes wlll stlck out.

He-member, however, that even LET will not allow you to usc function names as
variable names, so you need to change variable names that begin with (or match) a
BASIC Xl function name to some thtng else (e.g., chnnge RU"'P to BMP or VRUMP).

BASIC XII: Reference Manual Page c-r

CompatabUity with Atarl BASIC

Programs that RUN Too Fast

Appendix C

One of the reasons you bought B,\ SIC XE In the first place was probably Its speed.
"owever, little did you r"01l7-" that some of your BASIC programs (most likely
games) would RUN too fast! The only solution to this is to put delays In your
program. You can do this eoslly by CALLing a PROCEDURE that walts for some
time, dependent upon the value you pnss It, as follows:
11•• Procedura "Mait" Using TiM
t.t. Loca.
t.Z. for TeMP:t To TiMIMext
lin Exit

Now, Just Insert CALLS to this routine where you need to waste some time:
t •• Call "Man" using Z.

Memory Confilcts

BASIC XE attempts to conform to all memory location usage publfshed In any or all
of the following books:

Atarl RASIC Referenc" Monun), by Atart, Inc.
De Re Atori, by Chris Crawford el alia
Mapping the Atorl, from COMPUTE! Rooks
Master Memory Map, by Educational Software, Inc.

A few programs wrtt tr-n by extemely knowledgeable IndividuAls have made use of
one or more of the following unpublished facts about AtArl IlASIC:

I) Atarl RASIC use.• certain memory locntlons only At certain tlm"s,
2) Certain zero-pajr» location. have special mealng to AtArl RASIC, And
31 r.ertaln suhroutlnes Internal to AtArl IlASIC begtn at certain addresses In

the cartridge.

Obv lo usl y, we couldn't have added speed and fcatures to IlASIC XE without adding
code and making more use of the memory reserved for nA81f;. AJthoUKh we kept

to a minimum, we CAn't possibly be held rosponsib!e for conflfe ts crcatert
hy prog rams thAt depend use such methods to eccompl tsh their task. They were
creat"d specifically for usc with Atorl RASIC, and must r ..maln that WAy.

Automatle String DIMensioning

RASIC XE will automatically DIM"nslon str-Ings to 40 chAract"rs for you, and this
should have no errect on your Atarl programs, but, If you r"ally WAnt to
Insure total compntlbillty, use SET 11,0.

Indented LISTings

Whcn IlASIC XE LISTs a program It automatically Indents control structures (FOR,
WHILE, e tc.I, This can be a problem If you LIST an Atarl RASIC program with
extem"ly long IIn"s And t hen try to ENTER It Into RASIC XE. To solve problems
t ha t Rrls" from this, usc SET 12,0.

Page C-2 BASIC XI! Reference Manual

Appendix 0 Data Space In Extended Memory

Data Space In Extended Memory

When you use XI' with an Atarl130 XI' computer, there are three ways to
usn the "extra" 64 K bytns of Il AMmemory which this machine glvea you. AIthoUj(h
you can use only one of these ways at a time, the nexlblllty Is nice and may allow
you to write some Interesting programs. You should already be familiar with two
of these wa}""

1) You can usn RASIC XR's EXTEND command to give yourself a 64K program
workspace without affecting II data spaoe of 30K byt ..s or more, or

2) You cen boot with II DOS that allowa you to use this memory as a sUpt"r-fast
RllmDlsk (Atarl DOS 2.5 Is R good exampl..).

This Appendix will Introduce you to the third way to use this memory.

If you don't use the memory for large programs, and If you don't use It for 11
Ram Disk, then BASIC XR allows you to use It f"r your own purposes. In fact,

XE hilS several statements and functions which were designed to h..lp you
use this memory. If you wlIl r.. f.. r to the d ..scrlptlons In this manual of the
following commands, you will find that eaeh allows you to specify an optional bank
ntmber:

MOVE
BGET
BPUT

POKE
npo KE
PEEK
DPEEK

The bank numbers that can b .. used with thesc command. lire lHustrated In
Appendix B. Not shown In that dlll!!ram Is Bank 4, which Is simply the "main"
memory from $4000 to $7FFF. XE IIsslgns It this blink number for YOllr
conv..ntence , but In IIny oC these commands "Rank 4" Is assumed If no bonk number
Is given.

With the exc.. ptlon of MOVE, "II of these commands can h .. used easily and safely
to store or retrieve dota In Rny of the extend ..d memory, so long as neither
BASIC XF. nor nos Is tryln!\, to use the memory lit the same time. For example,
you could copy a sm af l disk rnphy
l) OPENing the file with Its original disk Inserted,
2) usIng BGET to rPlid It Into one of the blinks,
3) CLOSElng lind reOPENing the me lifter Inserting anoth.. r disk, and
4) using BPUT to write the me Crom the extended bank. If the me Is longer than

16K byte s, you could use 2, even 1111 4 banks to hold It while waiting for
the disks to he swapped.

Use oC the MOYE statoment requires a IItU .. more care, though, The bank number
yOIl specify Cor II MOYE r .. Cnrs to both the source and destination addresses. Thus
a command of the form --
Move $4000,$5000,$200,3
would move 512 ($200) bytes from location $4000 In bank 3 to location $5000 In
bank 3. This Is often exactly what you want and will probably make you gloriously
happy. But consider a command like this:
Move Adr(Goodles$),$4000,Len(Goodles$),2
This Is dllngerous and probably will not work!

BASIC XB Reference Manual Page 0-1

Data Space In Extended Memory Appendix D

It you refer to the memory map of Appendix B again, you will note that It Is
possible (or even probable) that BASIC XE will store your strings and arrays
somewhere In the address range $4000 through $7FFF In main memory. Assume,
for the moment, that the string GOodles$ Is stored nt address $6050. The above
MOVE command would try to move bytes from location $6050 In bank? to location
$4000 In bank 2. Almost certnlnly what you wanted.

How can you "void thIs prohlem? First, always MOVE any object that Is locnted In
maIn memory from MODO to $7FFF to an Intermediate location that Is outside
those bounds. Then MOVE from the intermediate location to the appropriate bonk.
What Intermediate orcas nre available? If you are writing your own program from
se rn tc h , thpn there are several good locations av atl ablo , if you will refer to
Appendix R again. If you aren't using It for any other purpose, page 6 of memory
($600 to $6FF) Is a good spot. Note that this limits your MOVEs to 256 bytes each.
This may r equf r e a little work on your part, such as In this routine:
910 Por Loc=O To Len(Xf) Step 256
920 Move Adr(X$)+Loc,$600,256
930 Move $600,$4000+Loc,256.3
940 Next Loc

(There Is a now in the nbove program: If X$ Is -- for example -- 10 characters
long, then the flrst set of MOVEs will move 246 hytes too much. If this could
cause a problem, your program would hnve to check for this situation and make a
shorter MOVE on t he last sectlon of each string.)

The program titled "SHOWPIC" on page D-5 shows anothcr good location to use for
a MOVE buffpr: thp graphics screen memory. In this program, the screen memory
is used to actually hold plc tures; but there Is no reascn you couldn't use excess
memory in this area (between APPM III and HIMEM) for any purpose you choose.

To h,..lp get you st ar ted using extended memory in new wO,ys, we here explain the
"!:;HOW PIC" prog ram , step hy sr ep, fts its name implies, it shows pictures. In fact,
it will show up to eii(ht ptr- t ur es In slide show foshlon, and Its hlJl' feoture Is the
speed at which it shows them.

To use the program, ynu need two or more picture files t hu t have been saved in
wh a t Is known as format. The flrst 76RO bytes (40 bytes per
line by 192 Unes) or a me In this format are sImply 8 dump of either a
GRAPHICS 24 (which Is R+I G, a f,,11 screen two color model or GRAPHICS 31 (a
full screen also, 15+16) serern memory. populnr drawing progrllms for AtarJ
A-hit computers either use this fonnat or pr'ov ld e R rnpons of using it. For
ex em ple , st andnrd KOflln Pad Dnrl Atorl Artist sortware use a condensed fo rm a t ,
hut both allow you to produce a Mlcro-lIIustr"tor file by pr osstng
"Controt-Shift-Inser t" (push the InsPrt key while holdIng down both the Control
and Shift keys). Doing this always produces a file or the name "PICTURE," so you
must go to DOS and rename the file before you SAve another picture on the disk In
the same way.

Slnf'e picture In this format are larKe, sug-gest put t ing the progrem
"SlfOWPIC" on " disk with nothing but DOS and the pictures. The picture flies
may use Rny 8-charRcter nem e , hut 011 mus t have the extension" .PIC" in order for
"SHOW PIC" to find them. The paragr"phs that begin on the following poge explain
the workings of "RnOWPIC" in some detatl , and the numbers used are those of the

Page D-2 BASIC XE Reference Manual

Appendix D

lines being explained.

Data Space In Extended Memory

180 The string Fll", Is used only to reae! a line from the dIrectory. The
strIng array FUea, wlll hold the nnmes "f up to eIght fll,,..

190 As noted above, a "'lero-lIIustrator pIcture Is simply 7R80 bytes
"dumped" from screen memory,

200 The states of the Start, Select, and Option keY" are found by PEEIUng
location $DOlr. If the Start key Is pressed, the least signifIcant bIt ($01)
of the location wllJ be zero.

240 We will read a portion of the directory of the disk In drive 1. Feel free
to change the drtve number nnd!or the fIll'name extension.

250 We will read !n a maximum of 8 rn" names.

280,210 As we read In Ii mename, we check it. If there are fewer than 8 picture
flIes on the cllsk, we will read the line which tells how many free sectors
there are. If we fine! that line, we exlt f"om the FOR loop early.

280,2'0 lIecause the directory listing formst does not produce standard nIl'
names, we must build a proper nome for later use by OPEN. Again, you may
change the drive number and/or tIIename extension If you wish.

300,310 Rt>gardless of how we exit the loop, we successfully re,,,1 In one fewer
than the value of the loop variable.

320 Even when you read the rHrectory, you close the file.

360,310 We chose a full screen black and whit.. plc tur-e, We also chose colors
which looked good on our monitor. If you are using color pictures, change
to GRAPHICS 31 and us .. approprfate SETCOLORs.

380,390 We will read in only as many flies as w.. found In the directory.

400 This one statement reads In the entire picture! Location $58 contains
• address of the belt InnIng of s.,reen memory (t.e., the address of the b)"te for
POSITION 0,0). See any good Atarl memory mop book.

440 We put pictures land 2 In honk 0, pictures 3 and 4 In bani' I, etc.

450,460 It It's on odd-numb<>red plo ture , we put It In the lower half of the bank.
Ev..n-numbered ones go to the top of the bonk.

410 As explnined nbove, this MOVE Is snfe because screen memory Is located
above $7FFF. If you use a program which somehow lowers II1MEM, this
might not work!

480,4'0 Finish up with this tile and loop for the next one.

500 At this point, all the pictures have been read In from disk and saved In
various parts of extended memory.

IIASIC XB Reference Manual Page D-3

Data Space In Extended Memory

530 Just Initialization. Itnes roo t hr ough 630.

Appendix D

570 Rr-membr-r that a WIULE loop executes so lonl'(as the expression
following WHIl.E Ie true. Rut a constant other than zr-ro Is always true. So
we loop unUl the u.." hits r.EA K or R

600-620 'l'hls Is n Ilttl" snl'sl:y. Every time we g et to line 600, Pic will he equal
to OIdplc, so the WHIl.E Ioop will execute at Ipast once. BASIC XE's
RANDOM funclion conveniently chooses a v811el picture number. Then we
go bno k up to the top of the WHILE loop to nnd out If we picked a dltferent
picture. If not , we try 8:::nin.

630 And this r-nsur-es that the loop of line. CO;, to 6?1l will execute at least
once next time

670-700 Il"P' this r.ods- look almost the same as that In lines 440 to 470! It
sho uld, The only difrerenC'e Is that nnw we are moving from the extend<>d
memory into thn memory.

740 As lonl'(as you hold th .. key down, RASIC :0: will loop on this line.
Rem ember , the Ill" symbol -neans "blt-wtse AND," so the test here Is ot 8
single bit In the console r cg lster-,

750 The end of t he "forever" loop.

Flntllly, a IMt hint of ano tbc-r to r-xplore. Although this program used
BGET to move A picture into sr-reon m("mory a nd thon MOVEd the picture Into
extended memor-y, you {"EHl hJ:;O use BGET to f('sd dirpctJy into extended memory,
It won't look as pr-e t t y 85 t h... bring read in, but you could remove line 400
An::t linf! 470 to rPAct as fnllows:
470 Bget fJ,Address,Plcslze,Bank

The slide abo w po r t ion of the prog-rnm is hef"'nusp. the pictures ore
still in the memory Ioca t tons wher-e it ex peo ts them. And, H you 11ft Rreak but
WAnt to c ont lnuo the- show, just type in the fo)lowinv. lInp:
GIIAPIJICS24:aYJ'O 500
to use the <1"faull colors. Or add SETCOLORs hefore til" GOTO If you wish.

IIASIC IE Reference Manual

Appendix D

SROWPIC Program

Data Space In Extended Memory
SROWPIC Progrsm

1•• •••••••••••••
III ••_ * *
12 •••_ * SHDMPIC *
U •••_ * *
14. R N.
Ill ..
161 1 up bUff.r..
171 ..
1•• II .. fll.s$rl.211.fll.$(2.)
1'1 Picsiz.:41*1'2
211 Con.ol.:$dllfISl.rl:$.1
211 ..
221 find all 1h. plc1ur•• fll ••n. A ..
24. Opl'n al.6,1,"Ol:*.PIC"
251 for Plc:1 TO •
211 Inpul .I.fll.$
27. If fll.$(2.210" " Th.n POPI'010 JII
2ae 'il.sSCPi[JJ:"Dl:",fiJ.$CI.lIJ,··"
2" fll.s$ (PiC/find (f lI.sUPic;J." " ••,,:". PIC"
1I••••xl Pic
1I1' Maxplc:Plc-1
U' Closp .1n. A ..
1I4. A r ••• In .11 lh. fil.s
liS. A ..
1I6. ,r.Phics 24
1I7. S.lcolor 2.6.'IS.tcolor •• I.'15.1color 1.1.'
J" for Plc:1 TD
1I,. Op.n .1 ••••• fil.S$(Pic;1
4.. Ig.l.I.lp••k($5.,.PiC5iZ•
•1. • ..
• 2. • ItOU. plctur. in'lD .xt.nd.d _ltOr,U. .._
•••
.5. .ddr.ss:$••••
• ,. If Pic&I:. Th.n 'ddr.ss:$""
.7. MOu. Ip••k($5".'ddr.5s.Pic.iz••
••• CIDS••l
"1 '.xl PiC5.. R._
51. A now Show 1h. pictur.s
52. A ..
53. OldPiC:.:Plc:.5.. R._
55 w.nl to dO lhls fDr.u.r5" A._
57. Mhil. I
5.. .._ b. sur... don'1 ShOW 5._ on.
5" twlc. in rOlf
I" 11. Pic:DldPiC
II' Plc:AandD_(I.Haxplcl
62. fndWhIl.
13. Dldpic:Pic
14. • ..
15. R MOU. fro...xl.nd.d _Mar, 1D scr••n
III ..
67.
I" .ddr.ss:$••••
I" If Plc&I:. Th.n .ddr.ss:$I•••
7.. MOu••ddr.ss.lp••k($5.,.Pic.iz••••n.
71. • ..
72. R allow us.r 10 lOOk Dn.
711. R ..
7.. ...il. P•••
75. fntlWhIl.

BASIC XB Reference Manual Page D-5

Data Space In Extended Memory
Space For Your Notes

Space For Your Notes

Page D-6

Appendix D

BASIC IE Reference Manual

Appendix E

Error Situations

Error Sftuationa
Numbers 1- 9

Whenever something that BASIC XE wasn't expecting happens, BASIC XF. will stop
whatever It's doing and give an error Iunteas, or course, you TRAP the error). An
explanatory message will accompany the error number Ir you have booted with the
extensions disk, otherwise the error number alone will be displayed. All errors
that Involve RASIC XE directly have personalized error messages, but some
obscure system errors simply produce the message "(See ManuaI)". This are errors
like #173 (can't rormat disk), and occur very rarely. The "(See Io'anuaJ)" does not
necessarily mean this manual, but the manual ror the device or subsystem that
produces th" error.

Error

1

Screen Io'essage and Further Description

BREAK key not TRAPped
While SET 0,1 WRS specified, the user hit the <BREAK> key. This
TRAPable error gives the BASIC XE programmer total system control.

2 Memory Pull
You have used all available memory. You can't enter any more
statements, nor con you define any more variables.

3 Value Out or Range
An expression or variable evaluates to an Incorrect value , Por example,
If a value 0-7 Is required, and you use a negative number or a number
greater than 7, an error 3 will occur (e.g., SETC. 99,0,0).

.. Too Many Variables
No more variables can be derlned. The maximum number or variables Is
128.

5 Access Past String JnM/;'
You tried to access a character beyond the . DIMensioned length or a
string.

II No DATA to READ
AREAD stat..ment Is executed aCter the last adata Item In the last
DATA statem"nt has already been read.

7 Val> 32767
RASIC XE encount.. red a line number larger than Some other
commands (e.g., POINT) can also produce this error.

II INPUT/READ Type Mismatch
The INPUT or READ statement did not receIve the. type or data
(arithmetic or string) It expected.

9 DIMensioning
Either you tried to reDIMension an already DIMensioned var, or used an
unDIMenslonPd varIable as though It were DIMenslonPd.

BASIC XE Reference Manual Page E-I

Error Situations
Numbers 10 - 20

AppendIx E

Error

10

11

12

Scre"n lIt"sMge and Further DescrIption

Exprell8lon too Complex
An expression Is too complex for BASIC XE to handle. The solution Is to
break the cnleulatlon Into two or more BASIC XE statements.

Overflow/UnderFlow
The point routines have produced a number that Is either too
large or too small.

Line Not Found
The target linono of a GOTO, GOSUB, or IF/THEN does not exist.

13 NEXT wIthout FOR
A NEXT avar wss encountered without a corresponding FOR avar.
Note: Improper use of POP could cause this error.

U Line Too Long or Complex
The progam line just ent.ered is either longer or more comple-x than
BASIC XE can handle. The solution Is to break the line Into multiple
lines by putt lng fewer statements on a line, or by evaluating the
expressIon in mul tlple statements.

15 Line Not Found
The line cont.atntng a GOSUB or Fon was delete d arter It was executed
but before the RETURN or NEXT was executod. This can happen It,
while a program, a STOP Is executed arter the GOSUB or FOR,
t hr-n the line containIng th e statement Is deleted, then you type
CONT and the program tries to execute the RETURN or NEXT.

16 RETU RN without GOSUB
A RETU RN was encountered when exeoutton Is not In a GOSUB routine.
Note: Improper use of POP could also cause this error.

17 Bad Line
You trIed to RUN a prog r em thnt had a line with an nl roady-marked
syntax error on It (I,e , It has th .. "r. RR0 R -" on It). Note: the SAVElng
of a Jfne tho t contsins 8 SyntAX error CAn be useful whpn dehugging your
program, but don't forget to "hang" It before RUNning again.

18 Not a Number
If the sexp in 8 VAL does not start with 8 nurnbor , this message number
Is generated. For ox ample , VAL("ABC") would cause thIs error.

19 Too BIg to LOAD
The program you're trying to LOAD Is larger than available memory.
ThIs "ould happen Ir you have used LOMEM to chang" the address at
which the BASIC XE t ables start, or If you're LOADIng usIng a DOS
dtrfer-cn t from the one used when the program WAS SAVEd.

20 Invalid Channel'
If th" devIce number given In an I/O statement Is greater than 7 or less'
than 0, t hnn this error is issued.

Page E-2 BASIC XE Reference Manual

Appendix E Error Sltuationa
Numbers 21 - 40

Error

u

Screen Message and Further nescrlptlon
File Not LOAD format
ThIs error results it you try to LOAD a file that was not created by
SAVE.

USING StrIng Too BIg
ThIs error occurs it the entire format
PRINT USING statement is longer than 255 characters.
a single format field Is longer than 59 characters.

string In a
It also occurs If

!3 USING Value Too BIg
The value ot an aexp In a PRINT USING statement Is greater than or
equal to 1 E+50.

24 USING Type Mlllln.tch
The lormat field In • PRINT USING statement and the correspondIng
exp to be output usIng that tormat are not of the same data type
(arIthmetic or strIng).

25 RGET DIM MI......tch
A strIng being retrieved by RGET has a dlrfer..nt DIMensIoned length
than the strIng varIable to whIch It Is to be .sRlgned.

28 RGET Type Mlsm.tch
The record element beIng retrieved by RGET Rnd the varIable to which
It Is assigned are not ol the aame data type.

28 Inv.lId Structure
The end ol a control structure 11kI' ENDIF or ENDWHILE was
encountered without a correspondIng IF or WRILE.

n P/M , Out or R.nge
An Illegal player/ml""lIe number. Players must be numbered from 0-3
and missiles from 4-7.

30 PIM Graphics not Active
You attempted to use R PMG statement b"fore InitializIng pIM's via
PMG. 1 or PMG. 2.

32 ENTER not TRAPped
End of ENTER. Thf s Is the error resulting rrom lIslng a SET 9,1.

34 Can't NUM/RENUM
.expl or .exp2 In a RENUM or NUM statement evaluated to zero.

35 Can't NUMIRENUM
When RENUMbering, the maximum line number (32767) waR exceeded.

40 StrIng Type Mismatch
You attempted to use an svar as an savar , or visa versa.

BABIC XB Reterence Manu.1 Page E-3

Error Situations
Numbers 65 - 147

Appendix E

Error

65

100

129

130

131

Scrccn M"ssAge Bnd Further DescrIption

P.XTEN Oed Memory Not Avallabl"
You tricd to LOA D an P.XTF.NDed program or use the
EXTEND statem ent on A computer that doesn't have extended memory.

F.xtcnslons not InstallP.<l!
You use-l 8 command avlaleble only It yo u hoot with the dIsk extensions.
Sep lIow to Root RASIC XE In the introduction for 8 list ot these
e ornrn ands ,

Channel Already OPP.N
You are trying to OPEN a rIO channel that 1,- already OrEN.

No Devtce Pandlpr
CIO could not find the device you sp.-drled In Its device table,

WrIte Only
You are trying to rend from a CIO channel that was OPENed for writing
only.

132 Bad DevIce Cmd
The I/O command you does not ex lrt for the devlc e, This can
happen H your XIO command or OPEN moue is wrong.

133 Channel Not OPEN
You t r tod to usp It CIO e harmr-I that you hnven't yet OPENpd.

J 35 Read Only
Yo n are tr,}1nJ! to writ'? to 8 CIO c hanr el that was OPENed for
only.

136 E,,<I-Ot-Plle
Therp Is no mor-e dlJt,l in thfl: file you n r c

138 Devlc.. Tlm"..",t
The dr-v k,.. you lrierl to did not wit. hin Its Rllotted time.

139 Oevke NAK
The devtoe doos not ackno wl cdg e .

14 t Screen Poal tlon
You tried to 8 post r.lon no t in t ho cur-r-ent grnphics mode,

1H Device Done
Ei t hr-r the I/O operation you a t tornpt od didn't e xor-ut e pr-oper-l y, or you
trJerl to write to 1:1 wrlte-protectf'rl dtsk,

145 Invalid GR Mo<le
You e t tempted to use 8 g raphlr-s mode that. dcosn'{ exIst.

147 No Memory for GR Mode
You don't have enough room for the graphics modo you sJ)f'cifled.

Page [-4 BASIC Xl! Reference Manual

Appendix E

Scre"n Message and Further Description

Error Situationa
Numbera 1lI0 - 171

160

Ul

182

U5

U7

UI

170

171

Invalid Drive'
DOS does not recognize the drive number you gave. This can happen If
you specified an Illcgsl drive number or If the drive Is not on.

Too Many OPEN Files
nos does not have any more buffers available on which to OPEN fll"s.

Disk Full
There Is no room for more data on the disk.

Bad File Name
You used an Illegal disk file name. See your DOS manual for legal rue
Dames.

File PROTECTed
You tried to write to a PROTECTed rue.

DIRectory Full
The disk directory Is full, so you can't create any new files.

File Not Found
DOS can't find the file you specified on the disk.

Bad Point Value
You attempted to POINT to a non-existent place on the disk, or you did
not OPEN the file In update mode (12).

BABIC XII Reference Manual Page F,-5

Error SituatIons
Space Por Your Notes

Page r.-6

Space For Your Notes

Appendix E

BASIC III Reference Manual

Index
aver

Underlined page numbers refer to sections where the term Is defined.

II

aa bitwise OR 19-20,21
In PRINT USING format 47, 49
with PROCEDURE parameters
7, 112-117

preceding I/O channel 41-42
In PRINT USING format 47-49

In variable assignment 16-17
as equal operator 20,21

> gr"ater than operator 20,21
>=greater or equal operator 20,21
! as flleapec eharacter 57
f\ exponentiation operator 19, 21,

atter avar or aavar 9, 12
In hexadecimal constant 23
In L"AR variable list 37
In PRINT USING format 47,49

as bitwise EO R 19-20, 21
In PRINT USING format 47, 49

as bitwise AND 19-20,21
In PRINT USING format 47-49•
as multiply operator 19, 21
In PRINT USING format 47-48
In Weapec string 57

+
as plus operator 19-20, 21
In PRINT USING format 47-49

for string concatenation 17
spacing In I/O 43
In PRINT USING format 47-49

as minus operator 19-20, 21
as unary minus 23
In PRINT USING format 47-50
In PRINT USING format 47-49

as dlvld" operator 19, 21
In PRINT USING format 47,50

spacing In I/O 42
savar element 12
with SORTUP/SORTDOWN 96,98

< less than operator 20,21
<= less or equal operator 20,21
<>not equal operator 20,21

BASIC IE Reference Manual

ABS - absolute value 17, 103
adata- ATASClldata 5 --
ADR - address of variable 70
with BPUT and BGET 51
with USR calls 118
and SET 15,aexp 36

Alphanumeric 5, 95
AND - logical AND operator 19-21
aop - 8.rlthmetlc operator 5, 19
Arlthmetle -
Assignment 16
BC D Storage 23
Constant 24, 61, 63
Expresslons 24
Floating Point 6, 23
Matrices 10-11
Operators 19-20
Variables 9

Arrays 5
Arithmetic 10
String 7, 12
DIMensiOning 13
Assignment 16
with RGET 53
as PROCEDURE parameters
113-117

Sorting 95-98
AlIC - ATAlICIl value 24,69
Assignment to variables 1M7
ATASCn 5,29,69,75,95,98
ATN - Arctangent 107,108
Automatic DIMensioning 12, 13
see also SET

avar - Arlthmetlc variable 5, 9
assignment 16 - -
In ex presslons 24
as LOCAL variable 14, 111,
112-113, 116

Page 1-1

BCD
EXTENDed mode

BCD
see lUnary Coded Decimal

BGET 51
withADR 70
with PMADR 89

Binary Coded Decimal 23,
Btnary operators 5, 19-20, 21
Bit wise operators-19-20, 21
AND (a:) 19-20
OR rn 19-20
F.OR (%) 19-20

BLOA D 54
BPUT 51
withADR 70
with PMADR 89

Brackets 3
BREAK key 4
Trapping 35

BSA VE 2, 54
BUMP 84, Ii8
BYE 39 -

CALL 2,110-111,117
In TRACE mode:i3

Channel for 1/0 5, 41-42
CRR, 69 -
CLOAD 29,30
CLOG - baseJO logarithm 103,.!.Q.!
CLOSE
an OPEN channel 43
done by LPRINT 45

CLR - clear all variables 35,37
cname- CALLed name 5,117-
COLOR 79 -
registen 77
values 78
SETCOLOR relationship 79
when PLOTting P.O
when filling 81

Concatenating Strings 17
Conditional

Expression 20
Statf'ments 60, 63-64, 65

Constant
see String Constant
and Arithmetic Constant

CO NT 31, 33 67-68
COS - cosine 107
CP 39
eSAVF. 29,lQ.

Page 1-2

Index

DATA 99,100
and SET 5,aexp 35

Data I/O 47
Deferred Mode 4
DEG 107, lOR
DEL 2,25,26,32
Derived Trigonometric Functions 108
Device 5,41
Storing programs to 29-30
OPENing and CLOSElng 42-43

DIM 13
ArraY" and Strings 10,12,13
autoDIM size 36
DIM size and RPUT/RGET 52-53
DIM within PROCEDURE 115

DIR 57
Direct Mode 4
Dlak File 41
DOS

Disk Operstlng System 2, 41,
51, 55, 57, 58

command 39
DPEEK 101,102
DPOKE 101,102
DRAWTO 80-
setting the COLOR 79
with rm 81

ELSE 64
END 31,93,109, 115
ENDIFC4
ENDWRILE 60,62
ENTER 29 -
to clf>a:rvariable table 9
in FAST mode 32
SET 5,llexp 35
SET 9,aexp 36

ERASE 57,5R
ERR 67,68-
Error Handling 33, 67-68
Error MessRge 35
Execute Mode 4
EXIT 2, 1I0-111, 116
and LOCAL 14715
from a GOSUB 109

exp 5, 20
EXP-=- exponential 103,104
Expression 5,23-24 --
ArithmetiC
String 24

EXTEND 4,32,35,38
EXTENDed Mode 3a;-51, 101

BASIC XI! Reterence Manual

Index

FAST 2, 31, 32
filespec 8,4H2
Fill with XIO 58, 81
Fill character -
In PRINT USING 47-48

FIND 70
Floating Point 6, 23
rOR 26, 35-38, 59
POP within rOR loop 62

rRE 35,37
Functlons-
Arithmetic 103, 104, 105
Game Controller 73, 74
P1M GrBphlcs 88, 89
String 89, 70, 71, 72
Trigonometric 107, 108

GET 45, 56
Glossary 5-7
GOSUB 109
ON •••GOSUB 65
RENUMbering ff
In FAST mode 32
leaving with POP 62
with LOCAL 14-15
EXITing a GOSUB 116

GOTO 27, 61, 68
ON ... GOTO 65

GRAPHICS 78, ii5
Graphics 31;:«1, 51, 75, 78
Mode 75-76, 79 -

Hexadecimal Constant 23, 36, 72
HEX' 72
HITCLR 2,88
HSTICK 74-

IF 83-64
Indentation 26, 35, 38
INPUT 24, 35,44, 52, 56
Custom Prompt 44
Detautt Prompt 35, 44
Reprompt 44

INT 103
Integera 6,19, 101-102
hexadecimal Integers 23

INVERSE 50

LEFn 71
LEN 16,53,69,71
LF.T 17 -
Ilneno 6, 29
see Biso Line Number

BASIC XE Reterence Manual

FAST
Numeric Constant

LIne Number 4, 6
LIST range-26, 29
RENUMbering 27
autoNUMber 25
and FAST 32
In TRACE mode 33
error line 68
with GOTO ! GOSUB 81, 109
with IF ... THEN 83
with ON 65
with TRAP 87
with RESTORE 100

LIST 9, 25, 26, 27, 29, 32, 38
I.Iteral String -

Sf'" String LI teral
LOAD 29,30,32
LOCAL 2,9,""14
POPping LOCALs 82
with GOBUR 109
implicit LOCALs 111-112
and EXIT 118

LOCATE 80
LOG - natul'allogarlthm J 04
Logical Operator 6, 17-19, 20
LOMEM 35, 37 -
Loops 32, 3s,-59, 80
lop 6, 20, 21, 24
LPRINT42, 45, 50
LVAR 2, 32,-3"fi,!I
Matrix VAriAble 8, 9-11
DIMensioning 13
assigning 16
AS PROCEDURE parameter 97

MID$ 71
MISSILE 84-86,87
Mod..s -
Graphics 78, 79
Operating 4
PIM Grephlcs 83

MOVE 2, 89, 102
mver !' 10, 24,53, 112
NEW 9,25
NEXT 59;""62
NORMAL 50
NOT 17,20,21
NOTE 55-
NUM 4-;25
Numerl" Constant
see Arithmetic Constant

Page 1-3

ON
Statement

ON 27,65
OPEN 4-1;"42,45,56
status of OPENed channel 55

Operating Modes 4
Operators 5,6,19
Arlthmetlc-19-20
Bitwise 19-20
Logical 20
Precedence 21

OR 19,.!!!.,21

PADDLE 73
PEEX 89, 101, 102
PEN 73 -
pexp 6, 112, 114, 115, 116
PLOT-79, 80, 81
P/M Graphics 83-85,90
Conventions 84
Fifth Play"r 36
Modes 85
Wraparound 86, ft8

PMADR 85,89
PMCLR ft8 -
PMCOLO R 77,86
PMGRAPHICS 85
PMMOVE 83-84,86, 88
pmnum 7, 84, 89-
PMWIDT-H86, 87
pname 7, 112
POINT 55
POXE 89,101,102
POP 62,
POSITION 80
PRINT 35,43,45,46,50, 76
PRINT USING 36,46,47
PROCEDURE 2,14,110-115,112
Program --

Er:lltlnl(25-27
Entry 25-27, 29, 35
Ex ee ut Ion 31-33
Formatting 26, 35, 36
Line 4, 7
I/O 29-30

PROTECT 57
PTRIG 73
PUT 45

RAD 107
RANDOM 104
READ 99-100
relational operators !Q.., 21, 24
REM 27
RENAME 58

Page 1-4

Index

RENUM 2,27,61
RESTORE 100
RETU RN 15, 62, 65, 109, 110,
RGET 2,44, 53 --
RIGHn 71 -
RND 104
RPUT 2,44,52
RUN 30,31,32
rvar 1., 1 iT," 114, 117
aavar 7, 12

DIMensIOning 13
assigning 17
In expressions 24
sorting 95-98
as parameters 112-113, 116, 117

SA VE 25, 30, 32
SET -
table 35-36
O-<RREAK> key trapping 35
1 -PRINT tabs 43
2 -INPUT prompt char 35
3 -FOR loops 59
4 -IN PUT reprompting 44
5 -LIST format 26-27
6 -print error messages 35
7 -P /M wr-aparound 86, 88
8 -PH A of USR arguments 118
9 -ENTER trappIng 29
10-5th player enahle 36
ll-autoDlM 12-13
12-lndentatlon or LIST 38
13-VAL w/ hex constant 72
14-USING format ovprnow 47
15-ADR w/ Itter"1 string 70

SETCOLOR 76-77,78,79-80,84
sexp 7,16,17,23,24
SCN J03 -
SIN 107
SORTDOWN 2,95,98
SORTUP 2,95,98
SOUND 93 -
SQR 103
Statement 7

Asslv,nment 16-17
Conditional 63--65
nATA 99-100
Data I/O 41-46,47-58
nlsk File 57-58
Graphics 75-81
Loops 59-82
P/M Graphics 83-91
Program EdIting 25-27

BASIC XI Reterence Manual

Index

Statement (contd.)
Program Execution 31-33
Program 110 29-30
Sorting 95-98
Subroutine 109-118

STATUS 55
STEP 59
STICK 73
STOP 33, 68
STU 72
STRIG 74
String
Array see savar
Assignment 16-17
AutoDIMenslonlng 12, 13
AutoDIM Size 36
Concatenation 17
Constant 23, 44
Expressions 24
as fIleapec 42
Functions 69-72
as PROCEDURE name 110-112,
117
Rubst rings 16
Variables 12

svar 7,12
asSIgning 16-17
In expressions 24
as PROCEDURE parameters 112,
116-117

SYS

BASIC XII Reference Manual

Statement
XIO

TAB
statement 46
function 46
tab stopa 35, 43

THEN 63, 64
TO -
with FOR 59
with SORT 97,98
with CALL 111-;114-116,117
with EXIT 116 --

TRACE 31,33
TRACEOFF3t,33
TRAP 31,35-36;4"4,47,£

UNPROTECT 57
USING
with PRINT 47
with CALL and PROC. 111-112,
117
with SORT 96, 98

US R 36, 70, 90,!!!.
VAL 36,72
var 7 -
Variables 7,
Arlthmetlc- 9
LOCAL variables 14-15
Matrix 10-11
Maximum number 9
Names 9
String 12
Types of 9

VSTICK 74, 84, 86

WHILE 26, 36,!!!., 62

XIO 55,2i, 81

Page 1-5

	Title
	Preface
	Table of Contents
	Introduction
	Variables
	Operators
	Expressions
	Editing Your Program
	Storing and Retrieving Your Program
	Making Your Program Stop and Go
	Configuring the BASIC XE System
	Exiting BASIC XE
	Beginning Data Input/Output
	Advanced Data Input/Output
	Managing Disk Files
	Looping and Jumping Statements
	Conditional Statements
	Handling Errors
	Handling Strings
	Using the Game Controllers
	Graphics
	Player/Missile Graphics
	Sound
	Sorting Arrays
	Using Fixed Data in Your Program
	Accessing Memory Directly
	Arithmetic Functions
	Trigonmetric Functions
	BASIC and Machine Language Subroutines
	Appendices
	Index

